You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Counter Strike 2 players detector

Supported Labels

['CT', 'CT_head', 'T', 'T_head']

ALL my models YOLOv10 & YOLOv9

How to use

from ultralytics import YOLO

# Load a pretrained YOLO model
model = YOLO(r'weights\yolov10s_cs2.pt')

# Run inference on 'image.png' with arguments
model.predict(
    'image.png',
    save=True,
    device=0
    )

Labels

labels.jpg

Results

results.png

Predict

train_batch0.jpg train_batch1.jpg

YOLOv10s summary (fused): 293 layers, 8,038,056 parameters, 0 gradients, 24.5 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:03<00:00,  1.41it/s]
                   all        160        372      0.958       0.94      0.979      0.772
               ct_body         88        110      0.964      0.964      0.988      0.861
               ct_head         82        104      0.946      0.847      0.953      0.634
                t_body         70         84      0.986      0.976       0.99      0.866
                t_head         62         74      0.938      0.973      0.984      0.728

Others models Counter Strike 2 YOLOv10m Object Detection

https://huggingface.co/ChitoParedes/cs2-yolov10m

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for jparedesDS/cs2-yolov10s

Base model

jameslahm/yolov10s
Finetuned
(1)
this model

Collection including jparedesDS/cs2-yolov10s