Model Card for mlpf-clic-clusters-v2.0.0
This model reconstructs particles in a detector, based on the tracks and calorimeter clusters recorded by the detector.
Model Details
The performance is measured with respect to generator-level jets and MET computed from Pythia particles, i.e. the truth-level jets and MET.
Jet performance
MET performance
Model Description
- Developed by: Joosep Pata, Eric Wulff, Farouk Mokhtar, Mengke Zhang, David Southwick, Maria Girone, David Southwick, Javier Duarte, Michael Kagan
- Model type: transformer
- License: Apache License
Model Sources
Uses
Direct Use
This model may be used to study the physics and computational performance on ML-based reconstruction in simulation.
Out-of-Scope Use
This model is not intended for physics measurements on real data.
Bias, Risks, and Limitations
The model has only been trained on simulation data and has not been validated against real data. The model has not been peer reviewed or published in a peer-reviewed journal.
How to Get Started with the Model
Use the code below to get started with the model.
#get the code
git clone https://github.com/jpata/particleflow
cd particleflow
git checkout v2.0.0
#get the models
git clone https://huggingface.co/jpata/particleflow models
Training Details
Trained on 8x MI250X for 26 epochs over ~3 days. The training was continued from a checkpoint due to the 24h time limit.
Training Data
The following datasets were used:
/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_qq_pf/2.3.0
/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_ttbar_pf/2.3.0
/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_ww_fullhad_pf/2.3.0
The truth and target definition was updated in jpata/particleflow#352 have an updated truth and target definition with respect to Pata, J., Wulff, E., Mokhtar, F. et al. Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors. Commun Phys 7, 124 (2024).
In particular, target particles for MLPF reconstruction are based on status=1 particles. For non-interacting status=1, the direct children interacting status=0 are used instead.
The datasets were generated using Key4HEP with the following scripts:
- https://github.com/HEP-KBFI/key4hep-sim/releases/tag/v1.0.0
- https://github.com/HEP-KBFI/key4hep-sim/blob/v1.0.0/clic/run_sim.sh
Training Procedure
#!/bin/bash
#SBATCH --job-name=mlpf-train
#SBATCH --account=project_465000301
#SBATCH --time=3-00:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=32
#SBATCH --mem=200G
#SBATCH --gpus-per-task=8
#SBATCH --partition=small-g
#SBATCH --no-requeue
#SBATCH -o logs/slurm-%x-%j-%N.out
cd /scratch/project_465000301/particleflow
module load LUMI/24.03 partition/G
export IMG=/scratch/project_465000301/pytorch-rocm6.2.simg
export PYTHONPATH=`pwd`
export TFDS_DATA_DIR=/scratch/project_465000301/tensorflow_datasets
#export MIOPEN_DISABLE_CACHE=true
export MIOPEN_USER_DB_PATH=/tmp/${USER}-${SLURM_JOB_ID}-miopen-cache
export MIOPEN_CUSTOM_CACHE_DIR=${MIOPEN_USER_DB_PATH}
export TF_CPP_MAX_VLOG_LEVEL=-1 #to suppress ROCm fusion is enabled messages
export ROCM_PATH=/opt/rocm
#export NCCL_DEBUG=INFO
#export MIOPEN_ENABLE_LOGGING=1
#export MIOPEN_ENABLE_LOGGING_CMD=1
#export MIOPEN_LOG_LEVEL=4
export KERAS_BACKEND=torch
env
#TF training
singularity exec \
--rocm \
-B /scratch/project_465000301 \
-B /tmp \
--env LD_LIBRARY_PATH=/opt/rocm/lib/ \
--env CUDA_VISIBLE_DEVICES=$ROCR_VISIBLE_DEVICES \
$IMG python3 mlpf/pipeline.py --dataset clic --gpus 8 \
--data-dir $TFDS_DATA_DIR --config parameters/pytorch/pyg-clic.yaml \
--train --gpu-batch-multiplier 128 --num-workers 8 --prefetch-factor 100 --checkpoint-freq 1 --conv-type attention --dtype bfloat16 --lr 0.0001 --num-epochs 30
Evaluation
#!/bin/bash
#SBATCH --partition gpu
#SBATCH --gres gpu:mig:1
#SBATCH --mem-per-gpu 200G
#SBATCH -o logs/slurm-%x-%j-%N.out
IMG=/home/software/singularity/pytorch.simg:2024-08-18
cd ~/particleflow
WEIGHTS=models/clic/clusters/v2.0.0/checkpoints/checkpoint-29-1.901667.pth
singularity exec -B /scratch/persistent --nv \
--env PYTHONPATH=`pwd` \
--env KERAS_BACKEND=torch \
$IMG python3 mlpf/pyg_pipeline.py --dataset clic --gpus 1 \
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-clic.yaml \
--test --make-plots --gpu-batch-multiplier 100 --load $WEIGHTS --dtype bfloat16 --prefetch-factor 10 --num-workers 8 --load $WEIGHTS
Citation
Glossary
- PF: particle flow reconstruction
- MLPF: machine learning for particle flow
- CLIC: Compact Linear Collider
Model Card Contact
Joosep Pata, [email protected]
Full outputs
/local/joosep/mlpf/results/clic/pyg-clic_20241011_102451_167094