SciPhi-Mistral-RAG-Hermes-7B-32k
SciPhi-Mistral-RAG-Hermes-7B-32k is a merge of the following models using LazyMergekit:
𧩠Configuration
slices:
- sources:
- model: SciPhi/SciPhi-Self-RAG-Mistral-7B-32k
layer_range: [0, 7]
- sources:
- model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
layer_range: [8, 16]
- sources:
- model: SciPhi/SciPhi-Self-RAG-Mistral-7B-32k
layer_range: [17, 24]
- sources:
- model: teknium/OpenHermes-2.5-Mistral-7B
layer_range: [25, 32]
merge_method: slerp
base_model: SciPhi/SciPhi-Self-RAG-Mistral-7B-32k
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: float16
tokenizer_source: base
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jtatman/SciPhi-Mistral-RAG-Hermes-7B-32k"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 118
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.