TinyDolphin-3x-MoE

TinyDolphin-3x-MoE is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
gate_mode: hidden
dtype: float16
experts:
  - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
    positive_prompts: 
    - "think step-by-step and follow these instructions"
    - "read the following passage, and summarize it in less than 30 words."
    - "please answer this question, consider the options carefully, and return the most likely answer."
  - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
    positive_prompts: ["produce python code"]
  - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b
    positive_prompts: ["What is 2 x 22?"]

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jtatman/TinyDolphin-3x-MoE"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
15
Safetensors
Model size
2.62B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jtatman/TinyDolphin-3x-MoE

Finetuned
(1)
this model
Quantizations
1 model

Collections including jtatman/TinyDolphin-3x-MoE