Whisper-squeezeformer-N6SQU-

This model is a fine-tuned version of openai/whisper-small on the LibriSpeech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1579
  • Wer: 5.4340

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 20
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2500
  • training_steps: 45000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.7861 1.0 2500 3.8746 131.6000
2.7936 2.0 5000 0.2788 14.1395
0.1896 3.0 7500 0.2055 10.4534
0.1024 4.0 10000 0.1973 8.6903
0.0602 5.0 12500 0.1949 8.9470
0.1756 6.0 15000 0.1584 7.5034
0.1005 7.0 17500 0.1525 6.7046
0.0619 8.0 20000 0.1549 6.7712
0.2214 9.0 22500 0.1455 6.3185
0.1398 10.0 25000 0.1445 6.1625
0.1967 11.0 27500 0.1302 5.5177
0.1329 12.0 30000 0.1298 5.5482
0.1778 13.0 32500 0.1227 5.3237
0.1281 14.0 35000 0.1235 5.1792
0.3553 15.0 37500 0.1238 5.2362
0.2678 16.0 40000 0.1211 5.0670
0.8916 17.0 42500 0.1431 5.3618
0.8058 18.0 45000 0.1579 5.4340

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0
Downloads last month
22
Safetensors
Model size
282M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jun-han/Whisper-squeezeformer-v7

Finetuned
(2150)
this model