metadata
license: mit
base_model: justinj92/phi2-platypus
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: dpoplatypus-phi2
results: []
datasets:
- Intel/orca_dpo_pairs
- argilla/ultrafeedback-binarized-preferences
See axolotl config
axolotl version: 0.3.0
base_model: justinj92/phi2-platypus
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_llama_derived_model: false
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
rl: true
datasets:
- path: Intel/orca_dpo_pairs
split: train
type: intel_apply_chatml
- path: argilla/ultrafeedback-binarized-preferences
split: train
type: argilla_apply_chatml
dataset_prepared_path: ./dpoplatypus-phi2/last_run_prepared
val_set_size: 0.0
output_dir: ./dpoplatypus-phi2/
#'Wqkv', 'out_proj', 'fc2', 'linear', 'fc1'
adapter:
sequence_len: 2048
sample_packing: false
pad_to_sequence_len:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embd
- lm_head
hub_model_id: justinj92/phi2-platypus-dpo
wandb_project: phi2-platypus-dpo
wandb_entity: justinjoy-5
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilion: 0.00001
lr_scheduler: cosine
max_grad_norm: 1.0
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
eval_steps:
evals_per_epoch: 4
saves_per_epoch: 2
eval_table_size:
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
dpoplatypus-phi2
This model is a fine-tuned version of justinj92/phi2-platypus on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 19120
Training results
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0