deit_doclaynet_base / README.md
kaixkhazaki's picture
Update README.md
a8ec4f6 verified
---
datasets:
- pierreguillou/DocLayNet-base
metrics:
- accuracy
base_model:
- facebook/deit-base-distilled-patch16-224
library_name: transformers
tags:
- vision
- document-layout-analysis
- document-classification
- deit
- doclaynet
---
# Data-efficient Image Transformer(DeiT) for Document Classification(DocLayNet)
This model is a fine-tuned Data-efficient Image Transformer(DeiT) for document image classification based on the DocLayNet dataset.
Trained on images of the document categories from DocLayNet dataset where the categories namely(with their indexes) are :
{'financial_reports': 0,
'government_tenders': 1,
'laws_and_regulations': 2,
'manuals': 3,
'patents': 4,
'scientific_articles': 5}
## Model description
DeiT(facebook/deit-base-distilled-patch16-224) finetuned on document classification
## Training data
DocLayNet-base
https://huggingface.co/datasets/pierreguillou/DocLayNet-base
## Training procedure
hyperparameters:
{
'batch_size': 128,
'num_epochs': 20,
'learning_rate': 1e-4,
'weight_decay': 0.1,
'warmup_ratio': 0.1,
'gradient_clip': 0.1,
'dropout_rate': 0.1,
'label_smoothing': 0.1
'optmizer': 'AdamW'
}
## Evaluation results
Test Loss: 0.8134, Test Acc: 81.56%
## Usage
```python
from transformers import pipeline
# Load the model using the image-classification pipeline
pipe = pipeline("image-classification", model="kaixkhazaki/vit_doclaynet_base")
# Test it with an image
result = pipe("path_to_image.jpg")
print(result)