ModernBERT-base

This is a sentence-transformers model finetuned from tasksource/ModernBERT-base-nli on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: tasksource/ModernBERT-base-nli
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • train
  • Language: hu
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("karsar/ModernBERT-base-hu")
# Run inference
sentences = [
    'Az emberek alszanak.',
    'Egy apa és a fia ölelgeti alvás közben.',
    'Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric all-nli-dev all-nli-test
cosine_accuracy 0.7102 0.67

Training Details

Training Dataset

train

  • Dataset: train
  • Size: 1,044,013 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 10 tokens
    • mean: 17.57 tokens
    • max: 95 tokens
    • min: 8 tokens
    • mean: 23.15 tokens
    • max: 82 tokens
    • min: 9 tokens
    • mean: 24.71 tokens
    • max: 92 tokens
  • Samples:
    anchor positive negative
    Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett. Egy ember a szabadban, lóháton. Egy ember egy étteremben van, és omlettet rendel.
    Gyerekek mosolyogva és integetett a kamera Gyermekek vannak jelen A gyerekek homlokot rántanak
    Egy fiú ugrál a gördeszkát a közepén egy piros híd. A fiú gördeszkás trükköt csinál. A fiú korcsolyázik a járdán.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

train

  • Dataset: train
  • Size: 5,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 10 tokens
    • mean: 17.57 tokens
    • max: 95 tokens
    • min: 8 tokens
    • mean: 23.15 tokens
    • max: 82 tokens
    • min: 9 tokens
    • mean: 24.71 tokens
    • max: 92 tokens
  • Samples:
    anchor positive negative
    Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett. Egy ember a szabadban, lóháton. Egy ember egy étteremben van, és omlettet rendel.
    Gyerekek mosolyogva és integetett a kamera Gyermekek vannak jelen A gyerekek homlokot rántanak
    Egy fiú ugrál a gördeszkát a közepén egy piros híd. A fiú gördeszkás trükköt csinál. A fiú korcsolyázik a járdán.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss train loss all-nli-dev_cosine_accuracy all-nli-test_cosine_accuracy
0 0 - - 0.5306 -
0.0008 100 2.818 - - -
0.0015 200 2.5967 - - -
0.0023 300 2.5905 - - -
0.0031 400 2.4971 - - -
0.0038 500 2.5099 - - -
0.0046 600 2.3072 - - -
0.0054 700 1.883 - - -
0.0061 800 1.3657 - - -
0.0069 900 1.5772 - - -
0.0077 1000 1.2804 - - -
0.0084 1100 1.3332 - - -
0.0092 1200 1.0596 - - -
0.0100 1300 0.7385 - - -
0.0107 1400 0.8946 - - -
0.0115 1500 0.7507 - - -
0.0123 1600 0.7161 - - -
0.0130 1700 0.7176 - - -
0.0138 1800 0.8173 - - -
0.0146 1900 0.7464 - - -
0.0153 2000 0.7542 0.9124 0.7244 -
0.0161 2100 0.6147 - - -
0.0169 2200 0.5755 - - -
0.0176 2300 1.0103 - - -
0.0184 2400 0.6152 - - -
0.0192 2500 0.4283 - - -
0.0199 2600 0.5124 - - -
0.0207 2700 0.7056 - - -
0.0215 2800 0.4688 - - -
0.0222 2900 0.5029 - - -
0.0230 3000 0.5196 - - -
0.0238 3100 0.488 - - -
0.0245 3200 0.3601 - - -
0.0253 3300 0.6175 - - -
0.0261 3400 0.7494 - - -
0.0268 3500 0.5092 - - -
0.0276 3600 0.557 - - -
0.0284 3700 0.9289 - - -
0.0291 3800 0.6672 - - -
0.0299 3900 0.6498 - - -
0.0307 4000 0.3891 1.6045 0.6146 -
0.0314 4100 0.3863 - - -
0.0322 4200 0.6232 - - -
0.0329 4300 0.7755 - - -
0.0337 4400 0.4809 - - -
0.0345 4500 0.2968 - - -
0.0352 4600 0.3402 - - -
0.0360 4700 0.4622 - - -
0.0368 4800 0.7333 - - -
0.0375 4900 0.5718 - - -
0.0383 5000 0.7179 - - -
0.0391 5100 0.5597 - - -
0.0398 5200 0.4884 - - -
0.0406 5300 0.3467 - - -
0.0414 5400 0.4234 - - -
0.0421 5500 0.4149 - - -
0.0429 5600 0.4568 - - -
0.0437 5700 0.5416 - - -
0.0444 5800 0.4317 - - -
0.0452 5900 0.5537 - - -
0.0460 6000 0.5437 1.2609 0.6716 -
0.0467 6100 0.526 - - -
0.0475 6200 0.5891 - - -
0.0483 6300 0.5615 - - -
0.0490 6400 0.6012 - - -
0.0498 6500 0.6295 - - -
0.0506 6600 0.7951 - - -
0.0513 6700 0.7898 - - -
0.0521 6800 0.523 - - -
0.0529 6900 0.5871 - - -
0.0536 7000 0.6337 - - -
0.0544 7100 0.7428 - - -
0.0552 7200 0.6299 - - -
0.0559 7300 0.389 - - -
0.0567 7400 0.384 - - -
0.0575 7500 0.7069 - - -
0.0582 7600 0.5387 - - -
0.0590 7700 0.4936 - - -
0.0598 7800 0.579 - - -
0.0605 7900 0.8806 - - -
0.0613 8000 0.7165 1.3063 0.6654 -
0.0621 8100 0.5884 - - -
0.0628 8200 0.7272 - - -
0.0636 8300 0.8061 - - -
0.0644 8400 0.6705 - - -
0.0651 8500 0.79 - - -
0.0659 8600 1.0937 - - -
0.0667 8700 0.7903 - - -
0.0674 8800 0.423 - - -
0.0682 8900 0.8756 - - -
0.0690 9000 0.7461 - - -
0.0697 9100 0.7282 - - -
0.0705 9200 0.7343 - - -
0.0713 9300 0.5109 - - -
0.0720 9400 0.5142 - - -
0.0728 9500 0.6688 - - -
0.0736 9600 0.8799 - - -
0.0743 9700 0.6665 - - -
0.0751 9800 0.6979 - - -
0.0759 9900 0.6971 - - -
0.0766 10000 0.8392 1.5133 0.703 -
0.0774 10100 0.6283 - - -
0.0782 10200 0.6315 - - -
0.0789 10300 0.4937 - - -
0.0797 10400 0.4819 - - -
0.0805 10500 0.5177 - - -
0.0812 10600 0.637 - - -
0.0820 10700 0.584 - - -
0.0828 10800 0.9142 - - -
0.0835 10900 0.6953 - - -
0.0843 11000 0.7623 - - -
0.0851 11100 0.6357 - - -
0.0858 11200 0.7508 - - -
0.0866 11300 0.5425 - - -
0.0874 11400 0.596 - - -
0.0881 11500 0.8407 - - -
0.0889 11600 0.7463 - - -
0.0897 11700 0.9188 - - -
0.0904 11800 0.6921 - - -
0.0912 11900 0.7707 - - -
0.0920 12000 0.7206 1.6151 0.6568 -
0.0927 12100 0.7925 - - -
0.0935 12200 0.8842 - - -
0.0943 12300 0.8328 - - -
0.0950 12400 0.5571 - - -
0.0958 12500 0.9304 - - -
0.0966 12600 0.4566 - - -
0.0973 12700 0.5217 - - -
0.0981 12800 0.4589 - - -
0.0988 12900 0.4216 - - -
0.0996 13000 0.7141 - - -
0.1004 13100 0.6205 - - -
0.1011 13200 0.4045 - - -
0.1019 13300 0.3494 - - -
0.1027 13400 0.4802 - - -
0.1034 13500 0.4482 - - -
0.1042 13600 0.5367 - - -
0.1050 13700 0.3565 - - -
0.1057 13800 0.3069 - - -
0.1065 13900 0.3576 - - -
0.1073 14000 0.4572 0.6264 0.8504 -
0.1080 14100 0.3922 - - -
0.1088 14200 0.289 - - -
0.1096 14300 0.5305 - - -
0.1103 14400 0.5243 - - -
0.1111 14500 0.5738 - - -
0.1119 14600 0.3457 - - -
0.1126 14700 0.3254 - - -
0.1134 14800 0.6328 - - -
0.1142 14900 0.4711 - - -
0.1149 15000 0.2532 - - -
0.1157 15100 0.4379 - - -
0.1165 15200 0.4992 - - -
0.1172 15300 0.3239 - - -
0.1180 15400 0.3294 - - -
0.1188 15500 0.332 - - -
0.1195 15600 0.3025 - - -
0.1203 15700 0.2406 - - -
0.1211 15800 0.4625 - - -
0.1218 15900 0.5237 - - -
0.1226 16000 0.3451 1.2647 0.8454 -
0.1234 16100 0.5763 - - -
0.1241 16200 0.8095 - - -
0.1249 16300 0.5725 - - -
0.1257 16400 0.5191 - - -
0.1264 16500 0.3933 - - -
0.1272 16600 0.3892 - - -
0.1280 16700 0.5239 - - -
0.1287 16800 0.6505 - - -
0.1295 16900 0.3977 - - -
0.1303 17000 0.2333 - - -
0.1310 17100 0.3542 - - -
0.1318 17200 0.3516 - - -
0.1326 17300 0.5825 - - -
0.1333 17400 0.4237 - - -
0.1341 17500 0.5338 - - -
0.1349 17600 0.3754 - - -
0.1356 17700 0.4027 - - -
0.1364 17800 0.3067 - - -
0.1372 17900 0.4103 - - -
0.1379 18000 0.3567 1.5228 0.7474 -
0.1387 18100 0.356 - - -
0.1395 18200 0.6599 - - -
0.1402 18300 0.4607 - - -
0.1410 18400 0.5707 - - -
0.1418 18500 0.506 - - -
0.1425 18600 0.553 - - -
0.1433 18700 0.4427 - - -
0.1441 18800 0.4758 - - -
0.1448 18900 0.4573 - - -
0.1456 19000 0.5183 - - -
0.1464 19100 0.7152 - - -
0.1471 19200 0.6519 - - -
0.1479 19300 0.4398 - - -
0.1487 19400 0.6364 - - -
0.1494 19500 0.5541 - - -
0.1502 19600 0.5911 - - -
0.1510 19700 0.4827 - - -
0.1517 19800 0.3507 - - -
0.1525 19900 0.4048 - - -
0.1533 20000 0.5348 1.1738 0.7378 -
0.1540 20100 0.5465 - - -
0.1548 20200 0.4924 - - -
0.1556 20300 0.5436 - - -
0.1563 20400 0.7259 - - -
0.1571 20500 0.5202 - - -
0.1579 20600 0.5634 - - -
0.1586 20700 0.6697 - - -
0.1594 20800 0.7563 - - -
0.1602 20900 0.6669 - - -
0.1609 21000 0.8264 - - -
0.1617 21100 0.948 - - -
0.1624 21200 0.7443 - - -
0.1632 21300 0.3897 - - -
0.1640 21400 0.7757 - - -
0.1647 21500 0.7034 - - -
0.1655 21600 0.7031 - - -
0.1663 21700 0.6138 - - -
0.1670 21800 0.5235 - - -
0.1678 21900 0.5078 - - -
0.1686 22000 0.7041 1.3245 0.7018 -
0.1693 22100 0.8529 - - -
0.1701 22200 0.5939 - - -
0.1709 22300 0.642 - - -
0.1716 22400 0.5834 - - -
0.1724 22500 0.7157 - - -
0.1732 22600 0.5561 - - -
0.1739 22700 0.5861 - - -
0.1747 22800 0.4327 - - -
0.1755 22900 0.409 - - -
0.1762 23000 0.462 - - -
0.1770 23100 0.581 - - -
0.1778 23200 0.5704 - - -
0.1785 23300 0.8111 - - -
0.1793 23400 0.6905 - - -
0.1801 23500 0.6811 - - -
0.1808 23600 0.6078 - - -
0.1816 23700 0.6502 - - -
0.1824 23800 0.5575 - - -
0.1831 23900 0.5162 - - -
0.1839 24000 0.7487 1.5347 0.7036 -
0.1847 24100 0.7011 - - -
0.1854 24200 0.7417 - - -
0.1862 24300 0.6514 - - -
0.1870 24400 0.738 - - -
0.1877 24500 0.7296 - - -
0.1885 24600 0.6939 - - -
0.1893 24700 0.8072 - - -
0.1900 24800 0.7847 - - -
0.1908 24900 0.5243 - - -
0.1916 25000 0.8317 - - -
0.1923 25100 0.3981 - - -
0.1931 25200 0.4715 - - -
0.1939 25300 0.3734 - - -
0.1946 25400 0.43 - - -
0.1954 25500 0.6921 - - -
0.1962 25600 0.724 - - -
0.1969 25700 0.4203 - - -
0.1977 25800 0.3013 - - -
0.1985 25900 0.5666 - - -
0.1992 26000 0.454 0.5471 0.9028 -
0.2000 26100 0.4989 - - -
0.2008 26200 0.4614 - - -
0.2015 26300 0.2856 - - -
0.2023 26400 0.458 - - -
0.2031 26500 0.5247 - - -
0.2038 26600 0.4425 - - -
0.2046 26700 0.4603 - - -
0.2054 26800 0.6186 - - -
0.2061 26900 0.6571 - - -
0.2069 27000 0.6305 - - -
0.2077 27100 0.5351 - - -
0.2084 27200 0.3616 - - -
0.2092 27300 0.7269 - - -
0.2100 27400 0.4669 - - -
0.2107 27500 0.3201 - - -
0.2115 27600 0.4897 - - -
0.2123 27700 0.4902 - - -
0.2130 27800 0.3957 - - -
0.2138 27900 0.418 - - -
0.2146 28000 0.294 1.1809 0.8098 -
0.2153 28100 0.3014 - - -
0.2161 28200 0.2607 - - -
0.2169 28300 0.5948 - - -
0.2176 28400 0.5235 - - -
0.2184 28500 0.2864 - - -
0.2192 28600 0.4785 - - -
0.2199 28700 0.6624 - - -
0.2207 28800 0.4939 - - -
0.2215 28900 0.5468 - - -
0.2222 29000 0.2632 - - -
0.2230 29100 0.2601 - - -
0.2238 29200 0.4946 - - -
0.2245 29300 0.5398 - - -
0.2253 29400 0.3971 - - -
0.2261 29500 0.2474 - - -
0.2268 29600 0.2803 - - -
0.2276 29700 0.3461 - - -
0.2283 29800 0.569 - - -
0.2291 29900 0.3645 - - -
0.2299 30000 0.4675 0.7793 0.82 -
0.2306 30100 0.3114 - - -
0.2314 30200 0.2872 - - -
0.2322 30300 0.2524 - - -
0.2329 30400 0.3419 - - -
0.2337 30500 0.3456 - - -
0.2345 30600 0.2813 - - -
0.2352 30700 0.6423 - - -
0.2360 30800 0.5166 - - -
0.2368 30900 0.6356 - - -
0.2375 31000 0.6066 - - -
0.2383 31100 0.3955 - - -
0.2391 31200 0.4736 - - -
0.2398 31300 0.468 - - -
0.2406 31400 0.4473 - - -
0.2414 31500 0.5372 - - -
0.2421 31600 0.6317 - - -
0.2429 31700 0.6729 - - -
0.2437 31800 0.4201 - - -
0.2444 31900 0.5762 - - -
0.2452 32000 0.465 1.2451 0.711 -
0.2460 32100 0.5183 - - -
0.2467 32200 0.5787 - - -
0.2475 32300 0.2941 - - -
0.2483 32400 0.3294 - - -
0.2490 32500 0.5425 - - -
0.2498 32600 0.4231 - - -
0.2506 32700 0.4012 - - -
0.2513 32800 0.5048 - - -
0.2521 32900 0.7835 - - -
0.2529 33000 0.4841 - - -
0.2536 33100 0.5165 - - -
0.2544 33200 0.616 - - -
0.2552 33300 0.7964 - - -
0.2559 33400 0.6555 - - -
0.2567 33500 0.8277 - - -
0.2575 33600 0.968 - - -
0.2582 33700 0.7169 - - -
0.2590 33800 0.4022 - - -
0.2598 33900 0.7319 - - -
0.2605 34000 0.6992 1.1376 0.7298 -
0.2613 34100 0.6158 - - -
0.2621 34200 0.5864 - - -
0.2628 34300 0.4992 - - -
0.2636 34400 0.4612 - - -
0.2644 34500 0.6673 - - -
0.2651 34600 0.7744 - - -
0.2659 34700 0.5635 - - -
0.2667 34800 0.5776 - - -
0.2674 34900 0.5226 - - -
0.2682 35000 0.7188 - - -
0.2690 35100 0.5005 - - -
0.2697 35200 0.5778 - - -
0.2705 35300 0.4347 - - -
0.2713 35400 0.4557 - - -
0.2720 35500 0.4636 - - -
0.2728 35600 0.503 - - -
0.2736 35700 0.496 - - -
0.2743 35800 0.7014 - - -
0.2751 35900 0.6399 - - -
0.2759 36000 0.5515 1.0167 0.7976 -
0.2766 36100 0.5554 - - -
0.2774 36200 0.6826 - - -
0.2782 36300 0.588 - - -
0.2789 36400 0.5108 - - -
0.2797 36500 0.7009 - - -
0.2805 36600 0.5777 - - -
0.2812 36700 0.68 - - -
0.2820 36800 0.5866 - - -
0.2828 36900 0.6809 - - -
0.2835 37000 0.6074 - - -
0.2843 37100 0.5996 - - -
0.2851 37200 0.7923 - - -
0.2858 37300 0.7223 - - -
0.2866 37400 0.4707 - - -
0.2874 37500 0.8465 - - -
0.2881 37600 0.4312 - - -
0.2889 37700 0.4312 - - -
0.2897 37800 0.4297 - - -
0.2904 37900 0.3338 - - -
0.2912 38000 0.7997 0.8492 0.859 -
0.2919 38100 0.7267 - - -
0.2927 38200 0.453 - - -
0.2935 38300 0.3056 - - -
0.2942 38400 0.5767 - - -
0.2950 38500 0.4489 - - -
0.2958 38600 0.4936 - - -
0.2965 38700 0.4155 - - -
0.2973 38800 0.2844 - - -
0.2981 38900 0.3929 - - -
0.2988 39000 0.4238 - - -
0.2996 39100 0.4135 - - -
0.3004 39200 0.2814 - - -
0.3011 39300 0.6305 - - -
0.3019 39400 0.5786 - - -
0.3027 39500 0.6518 - - -
0.3034 39600 0.3739 - - -
0.3042 39700 0.2734 - - -
0.3050 39800 0.7305 - - -
0.3057 39900 0.46 - - -
0.3065 40000 0.3369 0.8074 0.8386 -
0.3073 40100 0.3867 - - -
0.3080 40200 0.5064 - - -
0.3088 40300 0.2786 - - -
0.3096 40400 0.2565 - - -
0.3103 40500 0.2664 - - -
0.3111 40600 0.2573 - - -
0.3119 40700 0.2323 - - -
0.3126 40800 0.4503 - - -
0.3134 40900 0.4634 - - -
0.3142 41000 0.2864 - - -
0.3149 41100 0.4351 - - -
0.3157 41200 0.6829 - - -
0.3165 41300 0.4354 - - -
0.3172 41400 0.4817 - - -
0.3180 41500 0.2635 - - -
0.3188 41600 0.3183 - - -
0.3195 41700 0.4315 - - -
0.3203 41800 0.6398 - - -
0.3211 41900 0.3831 - - -
0.3218 42000 0.195 0.9463 0.774 -
0.3226 42100 0.2588 - - -
0.3234 42200 0.3148 - - -
0.3241 42300 0.5142 - - -
0.3249 42400 0.3584 - - -
0.3257 42500 0.3459 - - -
0.3264 42600 0.2535 - - -
0.3272 42700 0.3347 - - -
0.3280 42800 0.2351 - - -
0.3287 42900 0.4061 - - -
0.3295 43000 0.3064 - - -
0.3303 43100 0.3565 - - -
0.3310 43200 0.6056 - - -
0.3318 43300 0.4197 - - -
0.3326 43400 0.5453 - - -
0.3333 43500 0.5166 - - -
0.3341 43600 0.3983 - - -
0.3349 43700 0.462 - - -
0.3356 43800 0.4676 - - -
0.3364 43900 0.4021 - - -
0.3372 44000 0.5591 0.8470 0.799 -
0.3379 44100 0.588 - - -
0.3387 44200 0.6152 - - -
0.3395 44300 0.3542 - - -
0.3402 44400 0.5048 - - -
0.3410 44500 0.4672 - - -
0.3418 44600 0.519 - - -
0.3425 44700 0.4492 - - -
0.3433 44800 0.2612 - - -
0.3441 44900 0.3205 - - -
0.3448 45000 0.4904 - - -
0.3456 45100 0.3813 - - -
0.3464 45200 0.4119 - - -
0.3471 45300 0.4968 - - -
0.3479 45400 0.5634 - - -
0.3487 45500 0.4638 - - -
0.3494 45600 0.4271 - - -
0.3502 45700 0.61 - - -
0.3510 45800 0.782 - - -
0.3517 45900 0.6051 - - -
0.3525 46000 0.8175 0.7792 0.7852 -
0.3533 46100 0.942 - - -
0.3540 46200 0.6811 - - -
0.3548 46300 0.376 - - -
0.3556 46400 0.704 - - -
0.3563 46500 0.6783 - - -
0.3571 46600 0.5986 - - -
0.3578 46700 0.5548 - - -
0.3586 46800 0.4983 - - -
0.3594 46900 0.402 - - -
0.3601 47000 0.6978 - - -
0.3609 47100 0.7503 - - -
0.3617 47200 0.5298 - - -
0.3624 47300 0.6138 - - -
0.3632 47400 0.5539 - - -
0.3640 47500 0.591 - - -
0.3647 47600 0.4999 - - -
0.3655 47700 0.4934 - - -
0.3663 47800 0.4399 - - -
0.3670 47900 0.4822 - - -
0.3678 48000 0.4384 1.0635 0.7896 -
0.3686 48100 0.5239 - - -
0.3693 48200 0.503 - - -
0.3701 48300 0.6655 - - -
0.3709 48400 0.6247 - - -
0.3716 48500 0.6036 - - -
0.3724 48600 0.524 - - -
0.3732 48700 0.6682 - - -
0.3739 48800 0.5122 - - -
0.3747 48900 0.4451 - - -
0.3755 49000 0.7625 - - -
0.3762 49100 0.6206 - - -
0.3770 49200 0.701 - - -
0.3778 49300 0.6259 - - -
0.3785 49400 0.6891 - - -
0.3793 49500 0.5746 - - -
0.3801 49600 0.7717 - - -
0.3808 49700 0.7877 - - -
0.3816 49800 0.7302 - - -
0.3824 49900 0.5473 - - -
0.3831 50000 0.7718 0.7419 0.8194 -
0.3839 50100 0.5886 - - -
0.3847 50200 0.4268 - - -
0.3854 50300 0.411 - - -
0.3862 50400 0.4831 - - -
0.3870 50500 0.5904 - - -
0.3877 50600 0.7364 - - -
0.3885 50700 0.4386 - - -
0.3893 50800 0.3428 - - -
0.3900 50900 0.5774 - - -
0.3908 51000 0.4221 - - -
0.3916 51100 0.4026 - - -
0.3923 51200 0.3776 - - -
0.3931 51300 0.203 - - -
0.3939 51400 0.5251 - - -
0.3946 51500 0.4351 - - -
0.3954 51600 0.353 - - -
0.3962 51700 0.2841 - - -
0.3969 51800 0.5105 - - -
0.3977 51900 0.4854 - - -
0.3985 52000 0.5926 0.4281 0.9072 -
0.3992 52100 0.4137 - - -
0.4000 52200 0.2775 - - -
0.4008 52300 0.7688 - - -
0.4015 52400 0.4428 - - -
0.4023 52500 0.289 - - -
0.4031 52600 0.414 - - -
0.4038 52700 0.3626 - - -
0.4046 52800 0.2762 - - -
0.4054 52900 0.3207 - - -
0.4061 53000 0.2421 - - -
0.4069 53100 0.2585 - - -
0.4077 53200 0.2573 - - -
0.4084 53300 0.439 - - -
0.4092 53400 0.4406 - - -
0.4100 53500 0.2119 - - -
0.4107 53600 0.3343 - - -
0.4115 53700 0.6587 - - -
0.4123 53800 0.4071 - - -
0.4130 53900 0.5403 - - -
0.4138 54000 0.2426 0.5609 0.8958 -
0.4146 54100 0.241 - - -
0.4153 54200 0.3912 - - -
0.4161 54300 0.5871 - - -
0.4169 54400 0.358 - - -
0.4176 54500 0.1675 - - -
0.4184 54600 0.2417 - - -
0.4192 54700 0.3239 - - -
0.4199 54800 0.3485 - - -
0.4207 54900 0.4117 - - -
0.4214 55000 0.5028 - - -
0.4222 55100 0.265 - - -
0.4230 55200 0.3147 - - -
0.4237 55300 0.2105 - - -
0.4245 55400 0.3083 - - -
0.4253 55500 0.2695 - - -
0.4260 55600 0.3412 - - -
0.4268 55700 0.6009 - - -
0.4276 55800 0.4202 - - -
0.4283 55900 0.5336 - - -
0.4291 56000 0.4002 0.8252 0.8624 -
0.4299 56100 0.4216 - - -
0.4306 56200 0.3402 - - -
0.4314 56300 0.4168 - - -
0.4322 56400 0.4411 - - -
0.4329 56500 0.5359 - - -
0.4337 56600 0.5151 - - -
0.4345 56700 0.6349 - - -
0.4352 56800 1.5813 - - -
0.4360 56900 1.6637 - - -
0.4368 57000 1.7604 - - -
0.4375 57100 2.0211 - - -
0.4383 57200 1.9293 - - -
0.4391 57300 1.9076 - - -
0.4398 57400 1.9143 - - -
0.4406 57500 1.7937 - - -
0.4414 57600 1.8207 - - -
0.4421 57700 1.813 - - -
0.4429 57800 1.7214 - - -
0.4437 57900 1.7229 - - -
0.4444 58000 1.6582 0.8077 0.7914 -
0.4452 58100 1.6518 - - -
0.4460 58200 1.6449 - - -
0.4467 58300 1.568 - - -
0.4475 58400 1.5673 - - -
0.4483 58500 1.5651 - - -
0.4490 58600 1.5778 - - -
0.4498 58700 1.5195 - - -
0.4506 58800 1.4874 - - -
0.4513 58900 1.4405 - - -
0.4521 59000 1.4545 - - -
0.4529 59100 1.5086 - - -
0.4536 59200 1.4828 - - -
0.4544 59300 1.4325 - - -
0.4552 59400 1.4079 - - -
0.4559 59500 1.4081 - - -
0.4567 59600 1.3905 - - -
0.4575 59700 1.4186 - - -
0.4582 59800 1.41 - - -
0.4590 59900 1.4407 - - -
0.4598 60000 1.3896 0.7229 0.8242 -
0.4605 60100 1.3876 - - -
0.4613 60200 1.3545 - - -
0.4621 60300 1.3546 - - -
0.4628 60400 1.3438 - - -
0.4636 60500 1.3356 - - -
0.4644 60600 1.3805 - - -
0.4651 60700 1.4346 - - -
0.4659 60800 1.521 - - -
0.4667 60900 1.6184 - - -
0.4674 61000 1.5194 - - -
0.4682 61100 1.5911 - - -
0.4690 61200 1.5137 - - -
0.4697 61300 1.5644 - - -
0.4705 61400 1.5005 - - -
0.4713 61500 1.5356 - - -
0.4720 61600 1.4965 - - -
0.4728 61700 1.4623 - - -
0.4736 61800 1.4455 - - -
0.4743 61900 1.4451 - - -
0.4751 62000 1.4847 0.7731 0.8068 -
0.4759 62100 1.5076 - - -
0.4766 62200 1.4562 - - -
0.4774 62300 1.4864 - - -
0.4782 62400 1.4849 - - -
0.4789 62500 1.4504 - - -
0.4797 62600 1.4445 - - -
0.4805 62700 1.4533 - - -
0.4812 62800 1.3457 - - -
0.4820 62900 1.4672 - - -
0.4828 63000 1.3975 - - -
0.4835 63100 1.4895 - - -
0.4843 63200 1.3786 - - -
0.4851 63300 1.4722 - - -
0.4858 63400 1.4289 - - -
0.4866 63500 1.4191 - - -
0.4873 63600 1.4131 - - -
0.4881 63700 1.4592 - - -
0.4889 63800 1.4045 - - -
0.4896 63900 1.4086 - - -
0.4904 64000 1.3957 0.9342 0.7664 -
0.4912 64100 1.4041 - - -
0.4919 64200 1.3465 - - -
0.4927 64300 1.3846 - - -
0.4935 64400 1.4103 - - -
0.4942 64500 1.453 - - -
0.4950 64600 1.3668 - - -
0.4958 64700 1.426 - - -
0.4965 64800 1.4182 - - -
0.4973 64900 1.4032 - - -
0.4981 65000 1.3454 - - -
0.4988 65100 1.3173 - - -
0.4996 65200 1.3348 - - -
0.5004 65300 1.3542 - - -
0.5011 65400 1.3372 - - -
0.5019 65500 1.2873 - - -
0.5027 65600 1.3441 - - -
0.5034 65700 1.3465 - - -
0.5042 65800 1.3539 - - -
0.5050 65900 1.2753 - - -
0.5057 66000 1.349 1.0317 0.7534 -
0.5065 66100 1.3076 - - -
0.5073 66200 1.3808 - - -
0.5080 66300 1.3185 - - -
0.5088 66400 1.334 - - -
0.5096 66500 1.35 - - -
0.5103 66600 1.3469 - - -
0.5111 66700 1.3219 - - -
0.5119 66800 1.2597 - - -
0.5126 66900 1.3477 - - -
0.5134 67000 1.3463 - - -
0.5142 67100 1.2914 - - -
0.5149 67200 1.3025 - - -
0.5157 67300 1.2898 - - -
0.5165 67400 1.316 - - -
0.5172 67500 1.3588 - - -
0.5180 67600 1.3554 - - -
0.5188 67700 1.2989 - - -
0.5195 67800 1.3239 - - -
0.5203 67900 1.3008 - - -
0.5211 68000 1.325 1.0629 0.7204 -
0.5218 68100 1.3205 - - -
0.5226 68200 1.2946 - - -
0.5234 68300 1.3071 - - -
0.5241 68400 1.3348 - - -
0.5249 68500 1.3374 - - -
0.5257 68600 1.323 - - -
0.5264 68700 1.2934 - - -
0.5272 68800 1.3721 - - -
0.5280 68900 1.2767 - - -
0.5287 69000 1.2603 - - -
0.5295 69100 1.2686 - - -
0.5303 69200 1.2532 - - -
0.5310 69300 1.2824 - - -
0.5318 69400 1.2738 - - -
0.5326 69500 1.3338 - - -
0.5333 69600 1.2718 - - -
0.5341 69700 1.3239 - - -
0.5349 69800 1.2581 - - -
0.5356 69900 1.2255 - - -
0.5364 70000 1.3209 0.9075 0.7632 -
0.5372 70100 1.2825 - - -
0.5379 70200 1.2475 - - -
0.5387 70300 1.2232 - - -
0.5395 70400 1.267 - - -
0.5402 70500 1.2777 - - -
0.5410 70600 1.2831 - - -
0.5418 70700 1.2507 - - -
0.5425 70800 1.2428 - - -
0.5433 70900 1.2765 - - -
0.5441 71000 1.2613 - - -
0.5448 71100 1.2286 - - -
0.5456 71200 1.2344 - - -
0.5464 71300 1.2684 - - -
0.5471 71400 1.233 - - -
0.5479 71500 1.2488 - - -
0.5487 71600 1.2544 - - -
0.5494 71700 1.3167 - - -
0.5502 71800 1.256 - - -
0.5509 71900 1.3045 - - -
0.5517 72000 1.2699 0.9015 0.7592 -
0.5525 72100 1.2664 - - -
0.5532 72200 1.24 - - -
0.5540 72300 1.2285 - - -
0.5548 72400 1.2797 - - -
0.5555 72500 1.1958 - - -
0.5563 72600 1.2537 - - -
0.5571 72700 1.255 - - -
0.5578 72800 1.2302 - - -
0.5586 72900 1.2105 - - -
0.5594 73000 1.2941 - - -
0.5601 73100 1.2283 - - -
0.5609 73200 1.2497 - - -
0.5617 73300 1.2425 - - -
0.5624 73400 1.1892 - - -
0.5632 73500 1.1626 - - -
0.5640 73600 1.2128 - - -
0.5647 73700 1.1867 - - -
0.5655 73800 1.1584 - - -
0.5663 73900 1.2393 - - -
0.5670 74000 1.2418 0.9238 0.7524 -
0.5678 74100 1.1947 - - -
0.5686 74200 1.1706 - - -
0.5693 74300 1.2323 - - -
0.5701 74400 1.1935 - - -
0.5709 74500 1.1717 - - -
0.5716 74600 1.1926 - - -
0.5724 74700 1.1835 - - -
0.5732 74800 1.1998 - - -
0.5739 74900 1.1909 - - -
0.5747 75000 1.2149 - - -
0.5755 75100 1.2231 - - -
0.5762 75200 1.1709 - - -
0.5770 75300 1.2359 - - -
0.5778 75400 1.2179 - - -
0.5785 75500 1.2352 - - -
0.5793 75600 1.2049 - - -
0.5801 75700 1.2066 - - -
0.5808 75800 1.1898 - - -
0.5816 75900 1.1925 - - -
0.5824 76000 1.2601 1.0085 0.7544 -
0.5831 76100 1.1366 - - -
0.5839 76200 1.2151 - - -
0.5847 76300 1.2266 - - -
0.5854 76400 1.1512 - - -
0.5862 76500 1.1519 - - -
0.5870 76600 1.1471 - - -
0.5877 76700 1.1844 - - -
0.5885 76800 1.2006 - - -
0.5893 76900 1.2498 - - -
0.5900 77000 1.2298 - - -
0.5908 77100 1.1835 - - -
0.5916 77200 1.1874 - - -
0.5923 77300 1.2055 - - -
0.5931 77400 1.199 - - -
0.5939 77500 1.1363 - - -
0.5946 77600 1.1442 - - -
0.5954 77700 1.204 - - -
0.5962 77800 1.1489 - - -
0.5969 77900 1.1989 - - -
0.5977 78000 1.1938 0.9296 0.7794 -
0.5985 78100 1.2019 - - -
0.5992 78200 1.1795 - - -
0.6000 78300 1.1761 - - -
0.6008 78400 1.1299 - - -
0.6015 78500 1.1738 - - -
0.6023 78600 1.2198 - - -
0.6031 78700 1.1572 - - -
0.6038 78800 1.167 - - -
0.6046 78900 1.1832 - - -
0.6054 79000 1.1631 - - -
0.6061 79100 1.1197 - - -
0.6069 79200 1.1409 - - -
0.6077 79300 1.1452 - - -
0.6084 79400 1.1731 - - -
0.6092 79500 1.152 - - -
0.6100 79600 1.2185 - - -
0.6107 79700 1.1443 - - -
0.6115 79800 1.1746 - - -
0.6123 79900 1.1176 - - -
0.6130 80000 1.1944 1.1048 0.7202 -
0.6138 80100 1.1751 - - -
0.6145 80200 1.2293 - - -
0.6153 80300 1.1731 - - -
0.6161 80400 1.1711 - - -
0.6168 80500 1.1819 - - -
0.6176 80600 1.1692 - - -
0.6184 80700 1.1536 - - -
0.6191 80800 1.1936 - - -
0.6199 80900 1.1829 - - -
0.6207 81000 1.1719 - - -
0.6214 81100 1.2001 - - -
0.6222 81200 1.1501 - - -
0.6230 81300 1.1463 - - -
0.6237 81400 1.1487 - - -
0.6245 81500 1.1625 - - -
0.6253 81600 1.1482 - - -
0.6260 81700 1.147 - - -
0.6268 81800 1.1497 - - -
0.6276 81900 1.1446 - - -
0.6283 82000 1.1701 1.1050 0.7162 -
0.6291 82100 1.0952 - - -
0.6299 82200 1.1361 - - -
0.6306 82300 1.1584 - - -
0.6314 82400 1.1553 - - -
0.6322 82500 1.1621 - - -
0.6329 82600 1.1685 - - -
0.6337 82700 1.1698 - - -
0.6345 82800 1.1936 - - -
0.6352 82900 1.1631 - - -
0.6360 83000 1.1443 - - -
0.6368 83100 1.1511 - - -
0.6375 83200 1.1565 - - -
0.6383 83300 1.1384 - - -
0.6391 83400 1.1279 - - -
0.6398 83500 1.1306 - - -
0.6406 83600 1.1461 - - -
0.6414 83700 1.1621 - - -
0.6421 83800 1.1153 - - -
0.6429 83900 1.0626 - - -
0.6437 84000 1.1729 1.0598 0.724 -
0.6444 84100 1.1122 - - -
0.6452 84200 1.0985 - - -
0.6460 84300 1.1135 - - -
0.6467 84400 1.1886 - - -
0.6475 84500 1.1443 - - -
0.6483 84600 1.1627 - - -
0.6490 84700 1.088 - - -
0.6498 84800 1.1294 - - -
0.6506 84900 1.1251 - - -
0.6513 85000 1.1218 - - -
0.6521 85100 1.1628 - - -
0.6529 85200 1.1177 - - -
0.6536 85300 1.1522 - - -
0.6544 85400 1.1203 - - -
0.6552 85500 1.06 - - -
0.6559 85600 1.1197 - - -
0.6567 85700 1.109 - - -
0.6575 85800 1.0544 - - -
0.6582 85900 1.0987 - - -
0.6590 86000 1.0792 1.1465 0.7206 -
0.6598 86100 1.1276 - - -
0.6605 86200 1.099 - - -
0.6613 86300 1.1688 - - -
0.6621 86400 1.0562 - - -
0.6628 86500 1.0725 - - -
0.6636 86600 1.1031 - - -
0.6644 86700 1.0967 - - -
0.6651 86800 1.063 - - -
0.6659 86900 1.0409 - - -
0.6667 87000 1.1811 - - -
0.6674 87100 1.1475 - - -
0.6682 87200 1.0248 - - -
0.6690 87300 1.0646 - - -
0.6697 87400 1.0778 - - -
0.6705 87500 1.0745 - - -
0.6713 87600 1.0975 - - -
0.6720 87700 1.0581 - - -
0.6728 87800 1.0377 - - -
0.6736 87900 1.1017 - - -
0.6743 88000 1.0689 1.1524 0.7198 -
0.6751 88100 1.1284 - - -
0.6759 88200 1.0736 - - -
0.6766 88300 1.0742 - - -
0.6774 88400 1.1067 - - -
0.6782 88500 1.0623 - - -
0.6789 88600 1.0904 - - -
0.6797 88700 1.0958 - - -
0.6804 88800 1.0329 - - -
0.6812 88900 1.0613 - - -
0.6820 89000 1.0771 - - -
0.6827 89100 1.0558 - - -
0.6835 89200 1.0439 - - -
0.6843 89300 1.049 - - -
0.6850 89400 1.0905 - - -
0.6858 89500 1.0629 - - -
0.6866 89600 1.0661 - - -
0.6873 89700 1.1135 - - -
0.6881 89800 1.0671 - - -
0.6889 89900 1.0554 - - -
0.6896 90000 1.0414 0.9706 0.7508 -
0.6904 90100 1.028 - - -
0.6912 90200 1.0442 - - -
0.6919 90300 1.0573 - - -
0.6927 90400 1.0233 - - -
0.6935 90500 1.0326 - - -
0.6942 90600 1.0188 - - -
0.6950 90700 1.0358 - - -
0.6958 90800 1.0623 - - -
0.6965 90900 0.9863 - - -
0.6973 91000 1.0535 - - -
0.6981 91100 1.0135 - - -
0.6988 91200 1.1006 - - -
0.6996 91300 1.0666 - - -
0.7004 91400 0.9967 - - -
0.7011 91500 1.0445 - - -
0.7019 91600 1.0351 - - -
0.7027 91700 1.0524 - - -
0.7034 91800 1.0272 - - -
0.7042 91900 1.0171 - - -
0.7050 92000 1.0912 1.1023 0.725 -
0.7057 92100 1.0064 - - -
0.7065 92200 1.0634 - - -
0.7073 92300 1.0212 - - -
0.7080 92400 1.0396 - - -
0.7088 92500 1.0301 - - -
0.7096 92600 1.0441 - - -
0.7103 92700 1.0298 - - -
0.7111 92800 1.0597 - - -
0.7119 92900 1.0236 - - -
0.7126 93000 1.0165 - - -
0.7134 93100 1.0502 - - -
0.7142 93200 1.0019 - - -
0.7149 93300 1.024 - - -
0.7157 93400 1.0316 - - -
0.7165 93500 1.019 - - -
0.7172 93600 1.0441 - - -
0.7180 93700 0.9956 - - -
0.7188 93800 1.0471 - - -
0.7195 93900 1.0043 - - -
0.7203 94000 0.988 1.2226 0.7072 -
0.7211 94100 1.0491 - - -
0.7218 94200 0.9958 - - -
0.7226 94300 1.0438 - - -
0.7234 94400 1.0214 - - -
0.7241 94500 1.0251 - - -
0.7249 94600 0.9478 - - -
0.7257 94700 1.0485 - - -
0.7264 94800 0.9732 - - -
0.7272 94900 0.9509 - - -
0.7280 95000 1.0087 - - -
0.7287 95100 1.0122 - - -
0.7295 95200 1.0374 - - -
0.7303 95300 0.9906 - - -
0.7310 95400 1.0056 - - -
0.7318 95500 1.0247 - - -
0.7326 95600 1.0125 - - -
0.7333 95700 0.9832 - - -
0.7341 95800 0.9603 - - -
0.7349 95900 1.0088 - - -
0.7356 96000 0.994 1.1378 0.7204 -
0.7364 96100 0.9937 - - -
0.7372 96200 1.0542 - - -
0.7379 96300 0.9718 - - -
0.7387 96400 0.9873 - - -
0.7395 96500 1.0182 - - -
0.7402 96600 1.0015 - - -
0.7410 96700 1.0489 - - -
0.7418 96800 1.0042 - - -
0.7425 96900 1.0933 - - -
0.7433 97000 0.9977 - - -
0.7440 97100 0.9944 - - -
0.7448 97200 1.039 - - -
0.7456 97300 0.9722 - - -
0.7463 97400 1.0472 - - -
0.7471 97500 0.9454 - - -
0.7479 97600 0.9808 - - -
0.7486 97700 0.9875 - - -
0.7494 97800 1.0396 - - -
0.7502 97900 0.9982 - - -
0.7509 98000 0.968 1.1959 0.6948 -
0.7517 98100 1.0557 - - -
0.7525 98200 0.9831 - - -
0.7532 98300 0.9735 - - -
0.7540 98400 1.0383 - - -
0.7548 98500 0.9509 - - -
0.7555 98600 0.9619 - - -
0.7563 98700 0.9943 - - -
0.7571 98800 0.961 - - -
0.7578 98900 0.9769 - - -
0.7586 99000 1.0056 - - -
0.7594 99100 1.0257 - - -
0.7601 99200 0.9277 - - -
0.7609 99300 0.947 - - -
0.7617 99400 0.9904 - - -
0.7624 99500 0.955 - - -
0.7632 99600 0.9978 - - -
0.7640 99700 0.938 - - -
0.7647 99800 0.9999 - - -
0.7655 99900 0.988 - - -
0.7663 100000 0.986 1.1583 0.7184 -
0.7670 100100 1.0122 - - -
0.7678 100200 0.9872 - - -
0.7686 100300 0.9829 - - -
0.7693 100400 0.9791 - - -
0.7701 100500 1.0423 - - -
0.7709 100600 0.9619 - - -
0.7716 100700 0.9736 - - -
0.7724 100800 0.9769 - - -
0.7732 100900 0.9629 - - -
0.7739 101000 1.0041 - - -
0.7747 101100 0.9206 - - -
0.7755 101200 0.9799 - - -
0.7762 101300 0.9833 - - -
0.7770 101400 0.9734 - - -
0.7778 101500 1.0135 - - -
0.7785 101600 0.9531 - - -
0.7793 101700 0.964 - - -
0.7801 101800 0.9997 - - -
0.7808 101900 0.9935 - - -
0.7816 102000 0.9955 1.1245 0.7108 -
0.7824 102100 1.0063 - - -
0.7831 102200 0.9694 - - -
0.7839 102300 1.0218 - - -
0.7847 102400 0.9829 - - -
0.7854 102500 0.9296 - - -
0.7862 102600 0.9445 - - -
0.7870 102700 1.0018 - - -
0.7877 102800 0.9922 - - -
0.7885 102900 0.9909 - - -
0.7893 103000 1.0044 - - -
0.7900 103100 0.9517 - - -
0.7908 103200 0.9839 - - -
0.7916 103300 0.9815 - - -
0.7923 103400 0.9659 - - -
0.7931 103500 0.9523 - - -
0.7939 103600 0.9765 - - -
0.7946 103700 0.9637 - - -
0.7954 103800 0.9755 - - -
0.7962 103900 0.9678 - - -
0.7969 104000 0.9523 1.1226 0.7162 -
0.7977 104100 0.9122 - - -
0.7985 104200 0.9592 - - -
0.7992 104300 0.9193 - - -
0.8000 104400 0.9978 - - -
0.8008 104500 0.9319 - - -
0.8015 104600 0.9774 - - -
0.8023 104700 0.9367 - - -
0.8031 104800 1.0004 - - -
0.8038 104900 0.9217 - - -
0.8046 105000 0.9178 - - -
0.8054 105100 0.9663 - - -
0.8061 105200 0.954 - - -
0.8069 105300 0.9788 - - -
0.8077 105400 0.9637 - - -
0.8084 105500 0.943 - - -
0.8092 105600 0.9638 - - -
0.8099 105700 0.9842 - - -
0.8107 105800 0.9395 - - -
0.8115 105900 0.9389 - - -
0.8122 106000 0.9854 1.3013 0.6852 -
0.8130 106100 0.9753 - - -
0.8138 106200 0.9149 - - -
0.8145 106300 0.9607 - - -
0.8153 106400 0.9677 - - -
0.8161 106500 0.9344 - - -
0.8168 106600 0.9421 - - -
0.8176 106700 0.9477 - - -
0.8184 106800 0.8942 - - -
0.8191 106900 0.9954 - - -
0.8199 107000 0.9055 - - -
0.8207 107100 0.8938 - - -
0.8214 107200 0.9232 - - -
0.8222 107300 0.9558 - - -
0.8230 107400 0.9662 - - -
0.8237 107500 0.9581 - - -
0.8245 107600 0.9284 - - -
0.8253 107700 0.954 - - -
0.8260 107800 0.9625 - - -
0.8268 107900 0.9435 - - -
0.8276 108000 0.9776 1.2523 0.7004 -
0.8283 108100 0.9071 - - -
0.8291 108200 0.9719 - - -
0.8299 108300 0.9507 - - -
0.8306 108400 0.934 - - -
0.8314 108500 0.9362 - - -
0.8322 108600 0.8922 - - -
0.8329 108700 0.9779 - - -
0.8337 108800 0.8624 - - -
0.8345 108900 0.9046 - - -
0.8352 109000 0.9152 - - -
0.8360 109100 0.933 - - -
0.8368 109200 0.9054 - - -
0.8375 109300 0.9383 - - -
0.8383 109400 0.9204 - - -
0.8391 109500 0.8786 - - -
0.8398 109600 0.933 - - -
0.8406 109700 0.8507 - - -
0.8414 109800 0.8931 - - -
0.8421 109900 0.9045 - - -
0.8429 110000 0.926 1.2050 0.7128 -
0.8437 110100 0.9332 - - -
0.8444 110200 0.9144 - - -
0.8452 110300 0.8979 - - -
0.8460 110400 0.9142 - - -
0.8467 110500 0.8362 - - -
0.8475 110600 0.9579 - - -
0.8483 110700 0.8762 - - -
0.8490 110800 0.8719 - - -
0.8498 110900 0.9494 - - -
0.8506 111000 0.8743 - - -
0.8513 111100 0.9266 - - -
0.8521 111200 0.8943 - - -
0.8529 111300 0.908 - - -
0.8536 111400 0.8316 - - -
0.8544 111500 0.8574 - - -
0.8552 111600 0.8587 - - -
0.8559 111700 0.8862 - - -
0.8567 111800 0.8303 - - -
0.8575 111900 0.8252 - - -
0.8582 112000 0.8726 1.2884 0.704 -
0.8590 112100 0.8788 - - -
0.8598 112200 0.8197 - - -
0.8605 112300 0.8406 - - -
0.8613 112400 0.8634 - - -
0.8621 112500 0.8347 - - -
0.8628 112600 0.8558 - - -
0.8636 112700 0.8313 - - -
0.8644 112800 0.8221 - - -
0.8651 112900 0.8508 - - -
0.8659 113000 0.8214 - - -
0.8667 113100 0.8185 - - -
0.8674 113200 0.8198 - - -
0.8682 113300 0.8681 - - -
0.8690 113400 0.8676 - - -
0.8697 113500 0.838 - - -
0.8705 113600 0.8215 - - -
0.8713 113700 0.8468 - - -
0.8720 113800 0.807 - - -
0.8728 113900 0.8392 - - -
0.8735 114000 0.8318 1.2201 0.7272 -
0.8743 114100 0.824 - - -
0.8751 114200 0.7816 - - -
0.8758 114300 0.8095 - - -
0.8766 114400 0.8412 - - -
0.8774 114500 0.8514 - - -
0.8781 114600 0.836 - - -
0.8789 114700 0.8375 - - -
0.8797 114800 0.8267 - - -
0.8804 114900 0.7925 - - -
0.8812 115000 0.7948 - - -
0.8820 115100 0.7908 - - -
0.8827 115200 0.8092 - - -
0.8835 115300 0.7942 - - -
0.8843 115400 0.7551 - - -
0.8850 115500 0.7717 - - -
0.8858 115600 0.764 - - -
0.8866 115700 0.8025 - - -
0.8873 115800 0.8182 - - -
0.8881 115900 0.7158 - - -
0.8889 116000 0.7632 1.2520 0.7258 -
0.8896 116100 0.7593 - - -
0.8904 116200 0.8032 - - -
0.8912 116300 0.7809 - - -
0.8919 116400 0.7251 - - -
0.8927 116500 0.802 - - -
0.8935 116600 0.7949 - - -
0.8942 116700 0.7827 - - -
0.8950 116800 0.79 - - -
0.8958 116900 0.7668 - - -
0.8965 117000 0.8076 - - -
0.8973 117100 0.7533 - - -
0.8981 117200 0.752 - - -
0.8988 117300 0.7225 - - -
0.8996 117400 0.7694 - - -
0.9004 117500 0.7941 - - -
0.9011 117600 0.7548 - - -
0.9019 117700 0.7617 - - -
0.9027 117800 0.7693 - - -
0.9034 117900 0.7304 - - -
0.9042 118000 0.7955 1.2687 0.7324 -
0.9050 118100 0.7567 - - -
0.9057 118200 0.7253 - - -
0.9065 118300 0.756 - - -
0.9073 118400 0.7583 - - -
0.9080 118500 0.7559 - - -
0.9088 118600 0.7462 - - -
0.9096 118700 0.7433 - - -
0.9103 118800 0.7701 - - -
0.9111 118900 0.7541 - - -
0.9119 119000 0.7084 - - -
0.9126 119100 0.7207 - - -
0.9134 119200 0.7435 - - -
0.9142 119300 0.7528 - - -
0.9149 119400 0.7179 - - -
0.9157 119500 0.7276 - - -
0.9165 119600 0.7307 - - -
0.9172 119700 0.7484 - - -
0.9180 119800 1.1472 - - -
0.9188 119900 1.318 - - -
0.9195 120000 1.4042 1.2499 0.7238 -
0.9203 120100 1.2455 - - -
0.9211 120200 1.3026 - - -
0.9218 120300 1.0223 - - -
0.9226 120400 1.0531 - - -
0.9234 120500 1.1072 - - -
0.9241 120600 1.0879 - - -
0.9249 120700 1.0663 - - -
0.9257 120800 0.9457 - - -
0.9264 120900 1.1087 - - -
0.9272 121000 1.0896 - - -
0.9280 121100 1.0722 - - -
0.9287 121200 1.0552 - - -
0.9295 121300 1.1524 - - -
0.9303 121400 1.0925 - - -
0.9310 121500 1.0797 - - -
0.9318 121600 1.0849 - - -
0.9326 121700 1.0821 - - -
0.9333 121800 1.0373 - - -
0.9341 121900 1.1126 - - -
0.9349 122000 1.1339 1.2329 0.7186 -
0.9356 122100 1.1165 - - -
0.9364 122200 1.0295 - - -
0.9372 122300 0.9693 - - -
0.9379 122400 0.9914 - - -
0.9387 122500 0.9932 - - -
0.9394 122600 0.9796 - - -
0.9402 122700 0.9148 - - -
0.9410 122800 1.0079 - - -
0.9417 122900 0.9644 - - -
0.9425 123000 0.975 - - -
0.9433 123100 0.9657 - - -
0.9440 123200 0.944 - - -
0.9448 123300 1.0591 - - -
0.9456 123400 1.0175 - - -
0.9463 123500 0.9659 - - -
0.9471 123600 1.0315 - - -
0.9479 123700 0.9716 - - -
0.9486 123800 0.9887 - - -
0.9494 123900 0.9873 - - -
0.9502 124000 1.006 1.2707 0.7128 -
0.9509 124100 0.978 - - -
0.9517 124200 0.9194 - - -
0.9525 124300 0.8852 - - -
0.9532 124400 0.9265 - - -
0.9540 124500 0.956 - - -
0.9548 124600 0.87 - - -
0.9555 124700 0.8636 - - -
0.9563 124800 0.8749 - - -
0.9571 124900 0.8762 - - -
0.9578 125000 0.8432 - - -
0.9586 125100 0.8887 - - -
0.9594 125200 0.9097 - - -
0.9601 125300 0.823 - - -
0.9609 125400 0.8976 - - -
0.9617 125500 1.1025 - - -
0.9624 125600 0.9468 - - -
0.9632 125700 0.9733 - - -
0.9640 125800 0.9353 - - -
0.9647 125900 0.8633 - - -
0.9655 126000 0.9196 1.2893 0.7106 -
0.9663 126100 0.8514 - - -
0.9670 126200 0.8513 - - -
0.9678 126300 0.8597 - - -
0.9686 126400 0.929 - - -
0.9693 126500 0.9397 - - -
0.9701 126600 1.1423 - - -
0.9709 126700 1.0804 - - -
0.9716 126800 1.035 - - -
0.9724 126900 1.046 - - -
0.9732 127000 1.0308 - - -
0.9739 127100 0.985 - - -
0.9747 127200 1.0493 - - -
0.9755 127300 1.6257 - - -
0.9762 127400 0.9725 - - -
0.9770 127500 0.907 - - -
0.9778 127600 0.7219 - - -
0.9785 127700 0.7454 - - -
0.9793 127800 0.8149 - - -
0.9801 127900 0.6161 - - -
0.9808 128000 0.6559 1.3419 0.7106 -
0.9816 128100 0.6442 - - -
0.9824 128200 0.6461 - - -
0.9831 128300 0.7225 - - -
0.9839 128400 0.7092 - - -
0.9847 128500 0.7962 - - -
0.9854 128600 0.6362 - - -
0.9862 128700 0.815 - - -
0.9870 128800 0.7114 - - -
0.9877 128900 0.699 - - -
0.9885 129000 0.6741 - - -
0.9893 129100 0.5924 - - -
0.9900 129200 0.6305 - - -
0.9908 129300 0.9403 - - -
0.9916 129400 0.6837 - - -
0.9923 129500 0.8546 - - -
0.9931 129600 0.9752 - - -
0.9939 129700 0.9003 - - -
0.9946 129800 0.9449 - - -
0.9954 129900 0.871 - - -
0.9962 130000 0.7516 1.3455 0.7102 -
0.9969 130100 0.9024 - - -
0.9977 130200 0.8981 - - -
0.9985 130300 1.247 - - -
0.9992 130400 0.9558 - - -
1.0000 130500 0.9919 - - -
1.0 130502 - - - 0.67

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0.dev0
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
14
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for karsar/ModernBERT-base-hu

Finetuned
(2)
this model

Evaluation results