Kavya Manohar
Librarian Bot: Add base_model information to model (#3)
4e294c5
|
raw
history blame
1.71 kB
metadata
language:
  - ml
license: mit
tags:
  - whisper-event
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: whisper_malayalam_largev2
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: ml
          split: test
        metrics:
          - type: wer
            value: 84.36781609195401
            name: Wer

Whisper-fineTuning-malayalam

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

Loss: 0.5664
Wer: 84.3678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 12
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

 27.78 	1000 	 	
Training Loss Epoch Step Validation Loss Wer
0.0003 27.78 1000 0.5664 84.3678

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2