Basic info

model based Salesforce/codegen-350M-mono

fine-tuned with data codeparrot/github-code-clean

data filter by JavaScript and TypeScript

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

model_type = 'kdf/javascript-docstring-generation'
tokenizer = AutoTokenizer.from_pretrained(model_type)
model = AutoModelForCausalLM.from_pretrained(model_type)

inputs = tokenizer('''<|endoftext|>
function getDateAfterNDay(n){
    return moment().add(n, 'day')
}

// docstring
/**''', return_tensors='pt')

doc_max_length = 128

generated_ids = model.generate(
    **inputs,
    max_length=inputs.input_ids.shape[1] + doc_max_length,
    do_sample=False,
    return_dict_in_generate=True,
    num_return_sequences=1,
    output_scores=True,
    pad_token_id=50256,
    eos_token_id=50256  # <|endoftext|>
)

ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False)
print(ret)

Prompt

You could give model a style or a specific language, for example:

inputs = tokenizer('''<|endoftext|>
function add(a, b){
    return a + b;
}
// docstring
/**
  * Calculate number add.
  * @param a {number} the first number to add
  * @param b {number} the second number to add
  * @return the result of a + b
  */
<|endoftext|>
function getDateAfterNDay(n){
    return moment().add(n, 'day')
}
// docstring
/**''', return_tensors='pt')

doc_max_length = 128

generated_ids = model.generate(
    **inputs,
    max_length=inputs.input_ids.shape[1] + doc_max_length,
    do_sample=False,
    return_dict_in_generate=True,
    num_return_sequences=1,
    output_scores=True,
    pad_token_id=50256,
    eos_token_id=50256  # <|endoftext|>
)

ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False)
print(ret)

inputs = tokenizer('''<|endoftext|>
function add(a, b){
    return a + b;
}
// docstring
/**
  * 计算数字相加
  * @param a {number} 第一个加数
  * @param b {number} 第二个加数
  * @return 返回 a + b 的结果
  */
<|endoftext|>
function getDateAfterNDay(n){
    return moment().add(n, 'day')
}
// docstring
/**''', return_tensors='pt')

doc_max_length = 128

generated_ids = model.generate(
    **inputs,
    max_length=inputs.input_ids.shape[1] + doc_max_length,
    do_sample=False,
    return_dict_in_generate=True,
    num_return_sequences=1,
    output_scores=True,
    pad_token_id=50256,
    eos_token_id=50256  # <|endoftext|>
)

ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False)
print(ret)
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.