metadata
license: apache-2.0
base_model: kennethge123/superglue_rte-bert-base-uncased
tags:
- generated_from_trainer
datasets:
- bigbench
metrics:
- accuracy
model-index:
- name: entailed_after_rte-bert-base-uncased
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: bigbench
type: bigbench
config: entailed_polarity
split: validation
args: entailed_polarity
metrics:
- name: Accuracy
type: accuracy
value: 0.5714285714285714
entailed_after_rte-bert-base-uncased
This model is a fine-tuned version of kennethge123/superglue_rte-bert-base-uncased on the bigbench dataset. It achieves the following results on the evaluation set:
- Loss: 0.7322
- Accuracy: 0.5714
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 30 | 0.6876 | 0.5714 |
No log | 2.0 | 60 | 0.8029 | 0.5714 |
No log | 3.0 | 90 | 0.7246 | 0.5714 |
No log | 4.0 | 120 | 0.7152 | 0.5714 |
No log | 5.0 | 150 | 0.7887 | 0.5714 |
No log | 6.0 | 180 | 0.7498 | 0.5714 |
No log | 7.0 | 210 | 0.8149 | 0.4286 |
No log | 8.0 | 240 | 0.7055 | 0.5714 |
No log | 9.0 | 270 | 0.7209 | 0.5714 |
No log | 10.0 | 300 | 0.6922 | 0.5714 |
No log | 11.0 | 330 | 0.7186 | 0.5714 |
No log | 12.0 | 360 | 0.6916 | 0.5714 |
No log | 13.0 | 390 | 0.7233 | 0.5714 |
No log | 14.0 | 420 | 0.7109 | 0.5714 |
No log | 15.0 | 450 | 0.7051 | 0.5714 |
No log | 16.0 | 480 | 0.6968 | 0.5714 |
0.7046 | 17.0 | 510 | 0.7068 | 0.5714 |
0.7046 | 18.0 | 540 | 0.7319 | 0.5714 |
0.7046 | 19.0 | 570 | 0.7301 | 0.5714 |
0.7046 | 20.0 | 600 | 0.7322 | 0.5714 |
Framework versions
- Transformers 4.37.0
- Pytorch 1.13.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.2