|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: emotion_classification |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.60625 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# emotion_classification |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2024 |
|
- Accuracy: 0.6062 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 10 | 1.3600 | 0.4938 | |
|
| No log | 2.0 | 20 | 1.2908 | 0.4938 | |
|
| No log | 3.0 | 30 | 1.2799 | 0.5 | |
|
| No log | 4.0 | 40 | 1.2110 | 0.5312 | |
|
| No log | 5.0 | 50 | 1.2178 | 0.5188 | |
|
| No log | 6.0 | 60 | 1.2189 | 0.5188 | |
|
| No log | 7.0 | 70 | 1.2566 | 0.5375 | |
|
| No log | 8.0 | 80 | 1.1838 | 0.5687 | |
|
| No log | 9.0 | 90 | 1.2730 | 0.55 | |
|
| No log | 10.0 | 100 | 1.2329 | 0.575 | |
|
| No log | 11.0 | 110 | 1.2224 | 0.5563 | |
|
| No log | 12.0 | 120 | 1.2729 | 0.5563 | |
|
| No log | 13.0 | 130 | 1.2678 | 0.5687 | |
|
| No log | 14.0 | 140 | 1.2423 | 0.5687 | |
|
| No log | 15.0 | 150 | 1.1704 | 0.6312 | |
|
| No log | 16.0 | 160 | 1.2925 | 0.5625 | |
|
| No log | 17.0 | 170 | 1.3557 | 0.5312 | |
|
| No log | 18.0 | 180 | 1.2951 | 0.5687 | |
|
| No log | 19.0 | 190 | 1.2594 | 0.5625 | |
|
| No log | 20.0 | 200 | 1.2463 | 0.5687 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|