|
|
|
--- |
|
tags: |
|
- ultralyticsplus |
|
- yolov8 |
|
- ultralytics |
|
- yolo |
|
- vision |
|
- image-segmentation |
|
- pytorch |
|
library_name: ultralytics |
|
library_version: 8.0.6 |
|
inference: false |
|
|
|
datasets: |
|
- keremberke/pothole-segmentation |
|
|
|
model-index: |
|
- name: keremberke/yolov8n-pothole-segmentation |
|
results: |
|
- task: |
|
type: image-segmentation |
|
|
|
dataset: |
|
type: keremberke/pothole-segmentation |
|
name: pothole-segmentation |
|
split: validation |
|
|
|
metrics: |
|
- type: precision |
|
value: 0.00706 |
|
name: [email protected](box) |
|
- type: precision |
|
value: 0.00456 |
|
name: [email protected](mask) |
|
--- |
|
|
|
<div align="center"> |
|
<img width="640" alt="keremberke/yolov8n-pothole-segmentation" src="https://huggingface.co/keremberke/yolov8n-pothole-segmentation/resolve/main/thumbnail.jpg"> |
|
</div> |
|
|
|
### Supported Labels |
|
|
|
``` |
|
['pothole'] |
|
``` |
|
|
|
### How to use |
|
|
|
- Install [ultralytics](https://github.com/ultralytics/ultralytics) and [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): |
|
|
|
```bash |
|
pip install -U ultralytics ultralyticsplus |
|
``` |
|
|
|
- Load model and perform prediction: |
|
|
|
```python |
|
from ultralyticsplus import YOLO, render_model_output |
|
|
|
# load model |
|
model = YOLO('keremberke/yolov8n-pothole-segmentation') |
|
|
|
# set model parameters |
|
model.overrides['conf'] = 0.25 # NMS confidence threshold |
|
model.overrides['iou'] = 0.45 # NMS IoU threshold |
|
model.overrides['agnostic_nms'] = False # NMS class-agnostic |
|
model.overrides['max_det'] = 1000 # maximum number of detections per image |
|
|
|
# set image |
|
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' |
|
|
|
# perform inference |
|
for result in model.predict(image, return_outputs=True): |
|
print(result["det"]) # [[x1, y1, x2, y2, conf, class]] |
|
print(result["segment"]) # [segmentation mask] |
|
render = render_model_output(model=model, image=image, model_output=result) |
|
render.show() |
|
``` |
|
|
|
|