|
--- |
|
language: bn |
|
tags: |
|
- text generation |
|
- bengali |
|
- gpt2 |
|
- bangla |
|
- causal-lm |
|
widget: |
|
- text: "জীবনের মানে " |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
<!-- |
|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- null |
|
model_index: |
|
- name: bengali-lyricist-gpt2 |
|
results: |
|
- task: |
|
name: Causal Language Modeling |
|
type: text-generation |
|
--- |
|
--> |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bengali-lyricist-gpt2 |
|
|
|
This model is a fine-tuned version of [flax-community/gpt2-bengali](https://huggingface.co/flax-community/gpt2-bengali) on the [Bengali Song Lyrics](https://www.kaggle.com/shakirulhasan/bangla-song-lyrics) dataset from Kaggle. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1199 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 1.0 | 284 | 2.0302 | |
|
| 1.9991 | 2.0 | 568 | 2.0079 | |
|
| 1.9991 | 3.0 | 852 | 1.9956 | |
|
| 1.9135 | 4.0 | 1136 | 1.9885 | |
|
| 1.9135 | 5.0 | 1420 | 1.9840 | |
|
| 1.8561 | 6.0 | 1704 | 1.9831 | |
|
| 1.8561 | 7.0 | 1988 | 1.9828 | |
|
| 1.8094 | 8.0 | 2272 | 1.9827 | |
|
| 1.7663 | 9.0 | 2556 | 1.9868 | |
|
| 1.7663 | 10.0 | 2840 | 1.9902 | |
|
| 1.7279 | 11.0 | 3124 | 1.9961 | |
|
| 1.7279 | 12.0 | 3408 | 2.0023 | |
|
| 1.6887 | 13.0 | 3692 | 2.0092 | |
|
| 1.6887 | 14.0 | 3976 | 2.0162 | |
|
| 1.6546 | 15.0 | 4260 | 2.0225 | |
|
| 1.6217 | 16.0 | 4544 | 2.0315 | |
|
| 1.6217 | 17.0 | 4828 | 2.0410 | |
|
| 1.5953 | 18.0 | 5112 | 2.0474 | |
|
| 1.5953 | 19.0 | 5396 | 2.0587 | |
|
| 1.5648 | 20.0 | 5680 | 2.0679 | |
|
| 1.5648 | 21.0 | 5964 | 2.0745 | |
|
| 1.5413 | 22.0 | 6248 | 2.0836 | |
|
| 1.5238 | 23.0 | 6532 | 2.0890 | |
|
| 1.5238 | 24.0 | 6816 | 2.0969 | |
|
| 1.5043 | 25.0 | 7100 | 2.1035 | |
|
| 1.5043 | 26.0 | 7384 | 2.1091 | |
|
| 1.4936 | 27.0 | 7668 | 2.1135 | |
|
| 1.4936 | 28.0 | 7952 | 2.1172 | |
|
| 1.4822 | 29.0 | 8236 | 2.1186 | |
|
| 1.4783 | 30.0 | 8520 | 2.1199 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.9.0.dev0 |
|
- Pytorch 1.9.0+cu102 |
|
- Datasets 1.9.1.dev0 |
|
- Tokenizers 0.10.3 |
|
|