ec_classfication_0502_distilbert_base_uncased

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9120
  • F1: 0.8222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 59 0.6145 0.5753
No log 2.0 118 0.5000 0.7619
No log 3.0 177 0.5990 0.7
No log 4.0 236 0.5030 0.8235
No log 5.0 295 0.6379 0.8478
No log 6.0 354 0.6739 0.8478
No log 7.0 413 0.7597 0.8090
No log 8.0 472 0.7854 0.8222
0.1878 9.0 531 0.8594 0.8222
0.1878 10.0 590 0.8947 0.8090
0.1878 11.0 649 0.9086 0.8222
0.1878 12.0 708 0.9130 0.8222
0.1878 13.0 767 0.9070 0.8222
0.1878 14.0 826 0.9117 0.8222
0.1878 15.0 885 0.9120 0.8222

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
107
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.