Whisper Large v3 Turbo Nepali - Kiran Pantha

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the OpenSLR54 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1707
  • Wer: 23.6343
  • Cer: 5.4903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.3073 0.3597 300 0.2895 53.2870 13.5643
0.2457 0.7194 600 0.2396 45.3704 11.6816
0.166 1.0791 900 0.2062 37.9167 9.6668
0.1477 1.4388 1200 0.1949 37.4306 9.3071
0.1284 1.7986 1500 0.1680 32.6620 8.3235
0.0745 2.1583 1800 0.1706 31.1574 7.5272
0.0701 2.5180 2100 0.1661 32.0370 7.7217
0.0777 2.8777 2400 0.1599 28.6111 7.1308
0.0455 3.2374 2700 0.1723 28.7037 7.0097
0.0375 3.5971 3000 0.1579 26.9444 6.3674
0.0374 3.9568 3300 0.1639 26.8981 6.2794
0.0171 4.3165 3600 0.1711 25.3241 6.2280
0.0219 4.6763 3900 0.1638 25.0 5.9307
0.0089 5.0360 4200 0.1635 24.5139 5.7435
0.0072 5.3957 4500 0.1717 24.1898 5.5711
0.0059 5.7554 4800 0.1707 23.6343 5.4903

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cxx11.abi
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
25
Safetensors
Model size
809M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kiranpantha/whisper-large-v3-turbo-nepali

Finetuned
(137)
this model

Evaluation results