p-tuning-gpt2-large-with-sst2

This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3065
  • Accuracy: 0.8968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4485 1.0 4210 0.3556 0.8406
0.2677 2.0 8420 0.3760 0.8693
0.2717 3.0 12630 0.3264 0.8727
0.3687 4.0 16840 0.3410 0.8807
0.3483 5.0 21050 0.3075 0.8865
0.2969 6.0 25260 0.3315 0.8888
0.3577 7.0 29470 0.2875 0.8853
0.4036 8.0 33680 0.3143 0.8899
0.404 9.0 37890 0.2858 0.8911
0.2797 10.0 42100 0.3035 0.8876
0.3328 11.0 46310 0.3168 0.8876
0.2345 12.0 50520 0.3063 0.8933
0.3154 13.0 54730 0.2972 0.8911
0.2937 14.0 58940 0.2994 0.8933
0.2123 15.0 63150 0.2938 0.8899
0.295 16.0 67360 0.3087 0.8945
0.1924 17.0 71570 0.3031 0.8933
0.2415 18.0 75780 0.3067 0.8979
0.1876 19.0 79990 0.3080 0.8979
0.3891 20.0 84200 0.3065 0.8968

Framework versions

  • PEFT 0.7.1
  • Transformers 4.40.1
  • Pytorch 2.5.0
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kisejin/p-tuning-gpt2-large-with-sst2

Adapter
(1612)
this model