SDXL-leaf-inspired / README.md
mjbuehler's picture
Update README.md
d0921c0 verified
|
raw
history blame
3.81 kB
metadata
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
tags:
  - text-to-image
  - text-to-image
  - diffusers-training
  - diffusers
  - lora
  - template:sd-lora
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
instance_prompt: <leaf microstructure>
widget: []

SDXL Fine-tuned with Leaf Images

Model description

These are LoRA adaption weights for the SDXL-base-1.0 model.

Trigger keywords

The following image were used during fine-tuning using the keyword <leaf microstructure>:

image/png

You should use to trigger the image generation.

How to use

Defining some helper functions:

from diffusers import DiffusionPipeline
import torch
import os
from datetime import datetime
from PIL import Image

def generate_filename(base_name, extension=".png"):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return f"{base_name}_{timestamp}{extension}"

def save_image(image, directory, base_name="image_grid"):
    
    filename = generate_filename(base_name)
    file_path = os.path.join(directory, filename)
    image.save(file_path)
    print(f"Image saved as {file_path}")

def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid",
              save_individual_files=False):
    
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
        
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
        if save_individual_files:
            save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_')
            
    if save and save_dir:
        save_image(grid, save_dir, base_name)
    
    return grid

Text-to-image

Model loading:


import torch
from diffusers import DiffusionPipeline, AutoencoderKL

repo_id='lamm-mit/SDXL-leaf-inspired'

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
base = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    vae=vae,
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True
)
base.load_lora_weights(repo_id)
_ = base.to("cuda")

refiner = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-1.0",
    text_encoder_2=base.text_encoder_2,
    vae=base.vae,
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16",
)
refiner.to("cuda")

Image generation:

prompt = "a vase that resembles a <leaf microstructure>, high quality" 

num_samples    = 4
num_rows       = 4
guidance_scale = 15

all_images = []

for _ in range(num_rows):
    # Define how many steps and what % of steps to be run on each experts (80/20)
    n_steps = 25
    high_noise_frac = 0.8

    # run both experts
    image = base(
        prompt=prompt,
        num_inference_steps=n_steps, guidance_scale=guidance_scale,
        denoising_end=high_noise_frac,num_images_per_prompt=num_samples,
        output_type="latent",
    ).images
    image = refiner(
        prompt=prompt,
        num_inference_steps=n_steps, guidance_scale=guidance_scale,
        denoising_start=high_noise_frac,num_images_per_prompt=num_samples,
        image=image,
    ).images
    
    all_images.extend(image)

grid = image_grid(all_images, num_rows, num_samples,
                  save_individual_files=True,
                 )
grid

image/png