Built with Axolotl

See axolotl config

axolotl version: 0.5.0

base_model: NousResearch/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

#wget -O dataset.jsonl http://94.130.230.31/dataset.jsonl
chat_template: chatml
datasets:
  - path: ./dataset_2000.jsonl
    type: chat_template
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 12
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16: true
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
   pad_token: <|end_of_text|>

outputs/lora-out

This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss
1.4452 0.0124 1 1.4698
1.4609 0.2484 20 1.5851
1.5405 0.4969 40 1.5290
1.482 0.7453 60 1.5437
1.5389 0.9938 80 1.4984
0.5438 1.2422 100 1.6491
0.7409 1.4907 120 1.7644
0.6342 1.7391 140 1.7252
0.6785 1.9876 160 1.7029
0.2407 2.2360 180 1.8367
0.2412 2.4845 200 1.8888
0.2817 2.7329 220 1.8632
0.2976 2.9814 240 1.8760
0.0969 3.2298 260 2.0450
0.1387 3.4783 280 1.9947
0.1758 3.7267 300 1.9421
0.1182 3.9752 320 1.9968
0.0986 4.2236 340 2.0739
0.0639 4.4720 360 2.0798
0.0656 4.7205 380 2.1390
0.0582 4.9689 400 2.1313
0.016 5.2174 420 2.2601
0.0376 5.4658 440 2.2150
0.0387 5.7143 460 2.2287
0.0388 5.9627 480 2.2120
0.012 6.2112 500 2.3267
0.0104 6.4596 520 2.2502
0.0246 6.7081 540 2.3221
0.0134 6.9565 560 2.2929
0.0025 7.2050 580 2.3895
0.0092 7.4534 600 2.4587
0.0025 7.7019 620 2.4200
0.0029 7.9503 640 2.4380
0.0021 8.1988 660 2.4520
0.0018 8.4472 680 2.4975
0.0015 8.6957 700 2.5138
0.0013 8.9441 720 2.5276
0.0012 9.1925 740 2.5366
0.0012 9.4410 760 2.5477
0.0011 9.6894 780 2.5455
0.0012 9.9379 800 2.5499
0.0012 10.1863 820 2.5565
0.0014 10.4348 840 2.5604
0.0014 10.6832 860 2.5621
0.0012 10.9317 880 2.5663
0.001 11.1801 900 2.5673
0.0008 11.4286 920 2.5688
0.0008 11.6770 940 2.5668
0.0011 11.9255 960 2.5669

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lapaliv/lapaliv-0001

Adapter
(209)
this model