|
--- |
|
library_name: peft |
|
license: llama3.1 |
|
base_model: meta-llama/Llama-3.1-8B |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: outputs/020 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.5.2` |
|
```yaml |
|
# Название базовой модели, которая будет использоваться |
|
base_model: meta-llama/Llama-3.1-8B |
|
|
|
chat_template: llama3 |
|
datasets: |
|
- path: /workspace/dataset_200_30_repeats_by_cycles.jsonl # (A,B,C)x30 |
|
type: chat_template |
|
field_messages: conversations |
|
message_field_role: role |
|
message_field_content: content |
|
roles: |
|
user: ["user"] |
|
assistant: ["assistant"] |
|
system: ["system"] |
|
roles_to_train: ["assistant", "user"] |
|
train_on_eos: turn # Тренировать EOS на каждом конце реплики для лучшего запоминания |
|
|
|
# Путь к директории для сохранения результатов обучения |
|
output_dir: ./outputs/020 |
|
|
|
# Настройки обучения |
|
gradient_accumulation_steps: 5 |
|
micro_batch_size: 2 |
|
num_epochs: 1 |
|
learning_rate: 0.000002 |
|
warmup_steps: 500 |
|
logging_steps: 10 |
|
|
|
# Использование повторного обучения через LoRA |
|
adapter: lora |
|
lora_r: 16 # Увеличенное значение для сохранения памяти и генерации точных ответов |
|
lora_alpha: 32 |
|
lora_dropout: 0.1 |
|
lora_target_modules: |
|
- q_proj |
|
- k_proj |
|
- v_proj |
|
- o_proj |
|
|
|
# Тип модели и токенизатора |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
# Настройки последовательности |
|
sequence_len: 4096 # Достаточная длина для обработки 7 реплик |
|
sample_packing: false # Отключено для лучшего соответствия тексту |
|
pad_to_sequence_len: true |
|
|
|
# Оптимизация |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
weight_decay: 0.01 |
|
gradient_checkpointing: true |
|
|
|
# Использование BF16 для экономии памяти |
|
bf16: true |
|
|
|
# Flash Attention для ускорения |
|
flash_attention: true |
|
|
|
# Доля данных для валидации |
|
val_set_size: 0.1 |
|
|
|
# Настройки сохранения |
|
save_safetensors: true |
|
saves_per_epoch: 3 # Увеличено для промежуточного анализа качества модели |
|
|
|
# Настройки метрик |
|
evals_per_epoch: 10 |
|
eval_max_new_tokens: 128 |
|
|
|
# Специальные токены |
|
special_tokens: |
|
pad_token: "<|finetune_right_pad_id|>" |
|
bos_token: "<|begin_of_text|>" |
|
eos_token: "<|end_of_text|>" |
|
|
|
# WandB интеграция (если требуется) |
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_log_model: |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/020 |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0477 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 5 |
|
- total_train_batch_size: 10 |
|
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| No log | 0.0009 | 1 | 1.5900 | |
|
| 1.4756 | 0.1007 | 106 | 1.5880 | |
|
| 1.4972 | 0.2013 | 212 | 1.5655 | |
|
| 1.4563 | 0.3020 | 318 | 1.5018 | |
|
| 1.3754 | 0.4027 | 424 | 1.4127 | |
|
| 1.271 | 0.5033 | 530 | 1.3056 | |
|
| 1.2054 | 0.6040 | 636 | 1.2009 | |
|
| 1.1065 | 0.7047 | 742 | 1.1182 | |
|
| 1.0592 | 0.8053 | 848 | 1.0689 | |
|
| 1.0322 | 0.9060 | 954 | 1.0477 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |