YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Model description

This is a fine-tuned model based on apple/mobilevitv2-1.0-imagenet1k-256 trained for sketch image recognition using Xenova/quickdraw-small dataset.

How to use?

from transformers import MobileViTImageProcessor, MobileViTV2ForImageClassification
from PIL import Image
import requests
import torch
import numpy as np  # Importing NumPy

url = "https://static.thenounproject.com/png/2024184-200.png"
response = requests.get(url, stream=True)

# Convert to grayscale to ensure a single channel input
image = Image.open(response.raw).convert('L')  # Convert to grayscale

processor = MobileViTImageProcessor.from_pretrained("laszlokiss27/doodle-dash2")
model = MobileViTV2ForImageClassification.from_pretrained("laszlokiss27/doodle-dash2")

# Convert the PIL image to a tensor and add a channel dimension
image_tensor = torch.unsqueeze(torch.tensor(np.array(image)), 0).float()
image_tensor = image_tensor.unsqueeze(0)  # Add batch dimension

# Check if processor requires specific form of input
inputs = processor(images=image_tensor, return_tensors="pt")

outputs = model(**inputs)
logits = outputs.logits

# Get prediction
predicted_class_idx = logits.argmax(-1).item()
predicted_class = model.config.id2label[predicted_class_idx]
print("Predicted class:", predicted_class)
Downloads last month
27
Safetensors
Model size
4.58M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for laszlokiss27/doodle-dash2

Finetunes
1 model