YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Model description
This is a fine-tuned model based on apple/mobilevitv2-1.0-imagenet1k-256 trained for sketch image recognition using Xenova/quickdraw-small dataset.
How to use?
from transformers import MobileViTImageProcessor, MobileViTV2ForImageClassification
from PIL import Image
import requests
import torch
import numpy as np # Importing NumPy
url = "https://static.thenounproject.com/png/2024184-200.png"
response = requests.get(url, stream=True)
# Convert to grayscale to ensure a single channel input
image = Image.open(response.raw).convert('L') # Convert to grayscale
processor = MobileViTImageProcessor.from_pretrained("laszlokiss27/doodle-dash2")
model = MobileViTV2ForImageClassification.from_pretrained("laszlokiss27/doodle-dash2")
# Convert the PIL image to a tensor and add a channel dimension
image_tensor = torch.unsqueeze(torch.tensor(np.array(image)), 0).float()
image_tensor = image_tensor.unsqueeze(0) # Add batch dimension
# Check if processor requires specific form of input
inputs = processor(images=image_tensor, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# Get prediction
predicted_class_idx = logits.argmax(-1).item()
predicted_class = model.config.id2label[predicted_class_idx]
print("Predicted class:", predicted_class)
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.