Audio Course documentation

2단원. 오디오의 응용에 대한 소개

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

2단원. 오디오의 응용에 대한 소개

허깅페이스 오디오 코스의 두번째 단원에 오신것을 환영합니다! 지금까지는 오디오 데이터의 기본 개념을 살펴보고 🤗 Datasets과 🤗 Transformers 라이브러리를 활용해 오디오 데이터셋을 처리하는 방법을 배웠습니다. 또한 샘플링 속도, 진폭, 비트뎁스, 파형, 스펙트로그램, 사전학습된 모델을 위해 데이터를 전처리하는 방법에 관하여도 살펴봤습니다.

이 시점에서 여러분은 🤗 Transformers로 처리할 수 있는 오디오 작업들에 관해 배우고 싶으실 것이며 이에 필요한 기초 지식은 모두 갖추셨을 것입니다. 몇 가지 놀라운 오디오 작업 예제들을 살펴봅시다:

  • 오디오 분류(Audio classification): 오디오 클립을 쉽게 다른 카테고리들로 분류합니다. 녹음된 소리가 개가 짖는 소리인지 고양이가 우는 소리인지를 구분한다거나, 노래가 어떤 음악 장르에 속하는지 등을 판별합니다.
  • 자동 음성 인식(Automatic speech recognition): 오디오 클립에서 자동으로 자막을 만듭니다. “오늘 하루 어때요?”와 같이 누군가가 말하는 녹음 내용을 텍스트로 변환할 수 있습니다. 메모를 할 때 상당히 유용합니다!
  • 화자 구분(Speaker diarization): 녹음에서 누가 말하고 있는지 궁금했던 적이 있나요? 🤗 Transformers를 사용하면 오디오 클립의 어느 시점에 누가 말하는지를 구분할 수 있습니다. “Alice”와 “Bob” 두 사람의 대화 녹음에서 그들을 구분할 수 있다고 상상해 보세요.
  • 텍스트 음성 변환(Text to speech): 텍스트의 나레이션을 만들어 오디오북을 만들거나 접근성(accessibility)을 향상시킬 수도 있고 게임의 NPC에게 목소리를 부여할 수도 있습니다. 🤗 Transformers를 사용하면 쉬운 일입니다!

이번 단원에서는 🤗 Transformers의 pipeline() 함수를 사용하여 이런 작업들에 사전학습된 모델을 쓰는 법을 알아보겠습니다. 특히, 사전학습된 모델이 오디오 분류와 자동 음성 인식에 어떻게 쓰이는지를 살펴보겠습니다. 시작해봅시다!

< > Update on GitHub