Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-3B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - a2bb355e6b410733_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/a2bb355e6b410733_train_data.json
  type:
    field_instruction: prompt
    field_output: l2-name
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/0f0f5e4c-33da-472a-bb1c-c7a05d27d8e5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 72GB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/a2bb355e6b410733_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 0f0f5e4c-33da-472a-bb1c-c7a05d27d8e5
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0f0f5e4c-33da-472a-bb1c-c7a05d27d8e5
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

0f0f5e4c-33da-472a-bb1c-c7a05d27d8e5

This model is a fine-tuned version of Qwen/Qwen2.5-3B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0800

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0061 1 8.7312
4.8722 0.0551 9 3.5717
0.871 0.1103 18 0.4357
0.2249 0.1654 27 0.2506
0.1877 0.2205 36 0.1852
0.1889 0.2757 45 0.1379
0.1098 0.3308 54 0.1614
0.069 0.3859 63 0.1034
0.0521 0.4410 72 0.0980
0.0627 0.4962 81 0.0815
0.0294 0.5513 90 0.0805
0.037 0.6064 99 0.0800

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for leixa/0f0f5e4c-33da-472a-bb1c-c7a05d27d8e5

Base model

Qwen/Qwen2.5-3B
Adapter
(131)
this model