See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen1.5-0.5B-Chat
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f1ee80f481d77753_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f1ee80f481d77753_train_data.json
type:
field_instruction: task
field_output: website
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: leixa/a5dbb912-c802-4bb3-8bb1-e845a59d0d51
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/f1ee80f481d77753_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: a5dbb912-c802-4bb3-8bb1-e845a59d0d51
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a5dbb912-c802-4bb3-8bb1-e845a59d0d51
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
a5dbb912-c802-4bb3-8bb1-e845a59d0d51
This model is a fine-tuned version of Qwen/Qwen1.5-0.5B-Chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5385
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 177
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0170 | 1 | 8.9820 |
3.804 | 0.2553 | 15 | 3.3025 |
1.9887 | 0.5106 | 30 | 1.8288 |
1.5354 | 0.7660 | 45 | 1.1299 |
1.144 | 1.0213 | 60 | 0.8251 |
0.5864 | 1.2766 | 75 | 0.8379 |
0.6986 | 1.5319 | 90 | 0.6696 |
0.6586 | 1.7872 | 105 | 0.6393 |
0.3078 | 2.0426 | 120 | 0.5287 |
0.2991 | 2.2979 | 135 | 0.5294 |
0.3085 | 2.5532 | 150 | 0.5436 |
0.2546 | 2.8085 | 165 | 0.5385 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for leixa/a5dbb912-c802-4bb3-8bb1-e845a59d0d51
Base model
Qwen/Qwen1.5-0.5B-Chat