Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: peft-internal-testing/tiny-dummy-qwen2
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 29f33c348fb5a92b_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/29f33c348fb5a92b_train_data.json
  type:
    field_input: choices
    field_instruction: question
    field_output: answerKey
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/af5bffd3-2d87-46d7-9b49-4a72cf89ac5d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/29f33c348fb5a92b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: af5bffd3-2d87-46d7-9b49-4a72cf89ac5d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: af5bffd3-2d87-46d7-9b49-4a72cf89ac5d
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

af5bffd3-2d87-46d7-9b49-4a72cf89ac5d

This model is a fine-tuned version of peft-internal-testing/tiny-dummy-qwen2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.7959

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 213

Training results

Training Loss Epoch Step Validation Loss
No log 0.0141 1 11.9172
11.9116 0.2535 18 11.9049
11.8624 0.5070 36 11.8579
11.8276 0.7606 54 11.8283
11.8133 1.0141 72 11.8131
11.8072 1.2676 90 11.8028
11.8004 1.5211 108 11.7982
11.7966 1.7746 126 11.7970
11.7966 2.0282 144 11.7963
11.7969 2.2817 162 11.7961
11.7968 2.5352 180 11.7960
11.8001 2.7887 198 11.7959

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for leixa/af5bffd3-2d87-46d7-9b49-4a72cf89ac5d

Adapter
(240)
this model