See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 087d599e672c4327_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/087d599e672c4327_train_data.json
type:
field_instruction: text
field_output: target
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/b5e3b30f-8c85-40e4-a77c-348caf2796b1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/087d599e672c4327_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: b5e3b30f-8c85-40e4-a77c-348caf2796b1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b5e3b30f-8c85-40e4-a77c-348caf2796b1
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
b5e3b30f-8c85-40e4-a77c-348caf2796b1
This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.1692
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 249
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0121 | 1 | 10.3879 |
10.3796 | 0.2538 | 21 | 10.3731 |
10.3365 | 0.5076 | 42 | 10.3385 |
10.3116 | 0.7613 | 63 | 10.3101 |
11.7642 | 1.0181 | 84 | 10.2648 |
10.2853 | 1.2719 | 105 | 10.2290 |
10.3627 | 1.5257 | 126 | 10.2053 |
10.2634 | 1.7795 | 147 | 10.1889 |
10.1856 | 2.0363 | 168 | 10.1790 |
10.1798 | 2.2900 | 189 | 10.1730 |
10.178 | 2.5438 | 210 | 10.1701 |
10.1815 | 2.7976 | 231 | 10.1692 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Model tree for leixa/b5e3b30f-8c85-40e4-a77c-348caf2796b1
Base model
HuggingFaceH4/tiny-random-LlamaForCausalLM