See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ff0278723740ee77_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ff0278723740ee77_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/bb84a5d5-4732-4e64-883e-c7860dd12459
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/ff0278723740ee77_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: bb84a5d5-4732-4e64-883e-c7860dd12459
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: bb84a5d5-4732-4e64-883e-c7860dd12459
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
bb84a5d5-4732-4e64-883e-c7860dd12459
This model is a fine-tuned version of MLP-KTLim/llama-3-Korean-Bllossom-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3363
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0021 | 1 | 3.2399 |
1.1132 | 0.0190 | 9 | 0.8033 |
0.3899 | 0.0381 | 18 | 0.4629 |
0.4748 | 0.0571 | 27 | 0.4546 |
0.3983 | 0.0762 | 36 | 0.4109 |
0.3716 | 0.0952 | 45 | 0.3802 |
0.4076 | 0.1142 | 54 | 0.3659 |
0.3365 | 0.1333 | 63 | 0.3567 |
0.277 | 0.1523 | 72 | 0.3462 |
0.3885 | 0.1713 | 81 | 0.3425 |
0.3626 | 0.1904 | 90 | 0.3368 |
0.3685 | 0.2094 | 99 | 0.3363 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for leixa/bb84a5d5-4732-4e64-883e-c7860dd12459
Base model
meta-llama/Meta-Llama-3-8B
Finetuned
MLP-KTLim/llama-3-Korean-Bllossom-8B