lora_fine_tuned_boolq

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5547
  • Accuracy: 0.7778
  • F1: 0.6806

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6762 4.1667 50 0.5947 0.7778 0.6806
0.6639 8.3333 100 0.5719 0.7778 0.6806
0.6555 12.5 150 0.5648 0.7778 0.6806
0.6605 16.6667 200 0.5615 0.7778 0.6806
0.6612 20.8333 250 0.5568 0.7778 0.6806
0.6508 25.0 300 0.5567 0.7778 0.6806
0.6491 29.1667 350 0.5550 0.7778 0.6806
0.663 33.3333 400 0.5547 0.7778 0.6806

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lenatr99/lora_fine_tuned_boolq

Adapter
(59)
this model