lora_fine_tuned_cb / README.md
lenatr99's picture
lora_fine_tuned_cb
80c48d2 verified
|
raw
history blame
1.99 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: google-bert/bert-base-uncased
metrics:
  - accuracy
  - f1
model-index:
  - name: lora_fine_tuned_cb
    results: []

lora_fine_tuned_cb

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4310
  • Accuracy: 0.3182
  • F1: 0.1536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.8568 3.5714 50 2.3106 0.3182 0.1536
0.8465 7.1429 100 1.3703 0.3182 0.1536
0.7884 10.7143 150 1.3701 0.3182 0.1536
0.7275 14.2857 200 1.5024 0.3182 0.1536
0.7691 17.8571 250 1.3990 0.3182 0.1536
0.742 21.4286 300 1.3898 0.3182 0.1536
0.7094 25.0 350 1.4059 0.3182 0.1536
0.7238 28.5714 400 1.4310 0.3182 0.1536

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1