deeva-modcat-seqclass-deberta-v1

This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6435
  • Accuracy: 0.7161
  • F1: 0.2922
  • Precision: 0.1808
  • Recall: 0.7619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.18 2 0.7148 0.4139 0.0476 0.0272 0.1905
No log 0.36 4 0.7027 0.4835 0.0408 0.0238 0.1429
No log 0.55 6 0.6917 0.5586 0.0474 0.0284 0.1429
No log 0.73 8 0.6817 0.5604 0.0476 0.0286 0.1429
No log 0.91 10 0.6727 0.5623 0.0478 0.0287 0.1429
No log 1.09 12 0.6648 0.6374 0.0571 0.0357 0.1429
No log 1.27 14 0.6578 0.6374 0.0571 0.0357 0.1429
No log 1.45 16 0.6521 0.6355 0.0569 0.0355 0.1429
No log 1.64 18 0.6477 0.6392 0.1005 0.0621 0.2619
No log 1.82 20 0.6448 0.7015 0.2419 0.1503 0.6190
No log 2.0 22 0.6435 0.7161 0.2922 0.1808 0.7619

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for leobg/deeva-modcat-seqclass-deberta-v1

Finetuned
(134)
this model