Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/tiny-dummy-qwen2
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 64687ae6e66a75d2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/64687ae6e66a75d2_train_data.json
  type:
    field_instruction: question
    field_output: best_answer
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso05/606fc0d6-213c-4664-ab43-d71701fd3914
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/64687ae6e66a75d2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: dec0cfda-4d13-45a1-83ca-e5a54920b47a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: dec0cfda-4d13-45a1-83ca-e5a54920b47a
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

606fc0d6-213c-4664-ab43-d71701fd3914

This model is a fine-tuned version of fxmarty/tiny-dummy-qwen2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.9342

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
11.9339 0.0263 1 11.9360
11.9351 0.2368 9 11.9359
11.9342 0.4737 18 11.9356
11.9374 0.7105 27 11.9353
11.9339 0.9474 36 11.9350
11.9331 1.1842 45 11.9347
11.9317 1.4211 54 11.9345
11.9362 1.6579 63 11.9343
11.9321 1.8947 72 11.9342
11.9318 2.1316 81 11.9342
11.9319 2.3684 90 11.9342
11.9323 2.6053 99 11.9342

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso05/606fc0d6-213c-4664-ab43-d71701fd3914

Adapter
(107)
this model