See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-7B
bf16: true
chat_template: llama3
datasets:
- data_files:
- 5215a5c8087183e4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5215a5c8087183e4_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso05/9189bc0f-a5a7-4297-af60-a96041d12f38
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/5215a5c8087183e4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 61235898-e710-4ab6-a8fd-c23bd4b03338
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 61235898-e710-4ab6-a8fd-c23bd4b03338
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
9189bc0f-a5a7-4297-af60-a96041d12f38
This model is a fine-tuned version of Qwen/Qwen2.5-7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0277
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9888 | 0.0032 | 1 | 2.1421 |
2.1709 | 0.0292 | 9 | 2.1395 |
2.1252 | 0.0583 | 18 | 2.1190 |
2.2453 | 0.0875 | 27 | 2.0872 |
2.0662 | 0.1167 | 36 | 2.0637 |
2.0376 | 0.1459 | 45 | 2.0489 |
1.9603 | 0.1750 | 54 | 2.0396 |
2.0967 | 0.2042 | 63 | 2.0337 |
1.987 | 0.2334 | 72 | 2.0306 |
1.8723 | 0.2626 | 81 | 2.0286 |
2.2207 | 0.2917 | 90 | 2.0281 |
1.9771 | 0.3209 | 99 | 2.0277 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Model tree for lesso05/9189bc0f-a5a7-4297-af60-a96041d12f38
Base model
Qwen/Qwen2.5-7B