See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/CodeLlama-7b-hf-flash
bf16: true
chat_template: llama3
datasets:
- data_files:
- 42dd87f81d6f8d8f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/42dd87f81d6f8d8f_train_data.json
type:
field_input: history_data
field_instruction: current_conv_data
field_output: response_supporter
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso06/4c839a98-80bb-46ea-b24f-8f1d4541a09c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/42dd87f81d6f8d8f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4c839a98-80bb-46ea-b24f-8f1d4541a09c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4c839a98-80bb-46ea-b24f-8f1d4541a09c
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
4c839a98-80bb-46ea-b24f-8f1d4541a09c
This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf-flash on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7353
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.2573 | 0.0015 | 1 | 1.6043 |
2.9113 | 0.0138 | 9 | 1.4144 |
2.1709 | 0.0276 | 18 | 1.0022 |
1.7908 | 0.0414 | 27 | 0.8804 |
1.7876 | 0.0552 | 36 | 0.8304 |
1.6553 | 0.0690 | 45 | 0.7959 |
1.5406 | 0.0828 | 54 | 0.7708 |
1.4839 | 0.0966 | 63 | 0.7577 |
1.6354 | 0.1103 | 72 | 0.7445 |
1.4935 | 0.1241 | 81 | 0.7385 |
1.6475 | 0.1379 | 90 | 0.7358 |
1.4358 | 0.1517 | 99 | 0.7353 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 15
Model tree for lesso06/4c839a98-80bb-46ea-b24f-8f1d4541a09c
Base model
NousResearch/CodeLlama-7b-hf-flash