Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 63d2391d1efb74fa_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/63d2391d1efb74fa_train_data.json
  type:
    field_input: lexemes
    field_instruction: premise
    field_output: hypothesis
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso06/4dbeabc9-f44a-4deb-b48d-04fff34fbea3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/63d2391d1efb74fa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4dbeabc9-f44a-4deb-b48d-04fff34fbea3
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4dbeabc9-f44a-4deb-b48d-04fff34fbea3
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

4dbeabc9-f44a-4deb-b48d-04fff34fbea3

This model is a fine-tuned version of HuggingFaceM4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3549

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
10.3688 0.0153 1 10.3646
10.3588 0.1374 9 10.3640
10.3637 0.2748 18 10.3626
10.362 0.4122 27 10.3611
10.3619 0.5496 36 10.3597
10.3596 0.6870 45 10.3583
10.3526 0.8244 54 10.3571
10.3554 0.9618 63 10.3561
10.2353 1.0992 72 10.3555
10.9268 1.2366 81 10.3551
9.6987 1.3740 90 10.3549
11.0655 1.5115 99 10.3549

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for lesso06/4dbeabc9-f44a-4deb-b48d-04fff34fbea3

Adapter
(241)
this model