See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: true
chat_template: llama3
datasets:
- data_files:
- b4d2ba1803d2784f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b4d2ba1803d2784f_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso11/eedf5c68-46f9-4642-8562-3d87f73846ad
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/b4d2ba1803d2784f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1c169d6e-e69f-4e42-bc7b-e7be25bc6d95
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1c169d6e-e69f-4e42-bc7b-e7be25bc6d95
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
eedf5c68-46f9-4642-8562-3d87f73846ad
This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.9164
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.9302 | 0.0003 | 1 | 11.9307 |
11.9335 | 0.0016 | 5 | 11.9303 |
11.9266 | 0.0032 | 10 | 11.9286 |
11.9255 | 0.0049 | 15 | 11.9261 |
11.9239 | 0.0065 | 20 | 11.9236 |
11.9197 | 0.0081 | 25 | 11.9213 |
11.9239 | 0.0097 | 30 | 11.9193 |
11.923 | 0.0113 | 35 | 11.9178 |
11.9169 | 0.0129 | 40 | 11.9169 |
11.9183 | 0.0146 | 45 | 11.9165 |
11.9227 | 0.0162 | 50 | 11.9164 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for lesso11/eedf5c68-46f9-4642-8562-3d87f73846ad
Base model
katuni4ka/tiny-random-qwen1.5-moe