leaderboard-pr-bot's picture
Adding Evaluation Results
4435a5d
|
raw
history blame
3.14 kB
---
license: mit
datasets:
- garage-bAInd/Open-Platypus
language:
- en
pipeline_tag: text-generation
---
# tinyllama-1.1b-chat-v0.3_platypus
**tinyllama-1.1b-chat-v0.3_platypus** is an instruction fine-tuned model based on the tinyllama transformer architecture.
### Benchmark Metrics
| Metric |lgaalves/tinyllama-1.1b-chat-v0.3_platypus | tinyllama-1.1b-chat-v0.3 |
|-----------------------|-------|-------|
| Avg. | 37.67 | **38.74** |
| ARC (25-shot) | 30.29 | **35.07** |
| HellaSwag (10-shot) | 55.12 | **57.7** |
| MMLU (5-shot) | **26.13** | 25.53 |
| TruthfulQA (0-shot) | **39.15** | 36.67 |
We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results.
### Model Details
* **Trained by**: Luiz G A Alves
* **Model type:** **tinyllama-1.1b-chat-v0.3_platypus** is an auto-regressive language model based on the tinyllama transformer architecture.
* **Language(s)**: English
### How to use:
```python
# Use a pipeline as a high-level helper
>>> from transformers import pipeline
>>> pipe = pipeline("text-generation", model="lgaalves/tinyllama-1.1b-chat-v0.3_platypus")
>>> question = "What is a large language model?"
>>> answer = pipe(question)
>>> print(answer[0]['generated_text'])
```
or, you can load the model direclty using:
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("lgaalves/tinyllama-1.1b-chat-v0.3_platypus")
model = AutoModelForCausalLM.from_pretrained("lgaalves/tinyllama-1.1b-chat-v0.3_platypus")
```
### Training Dataset
`lgaalves/tinyllama-1.1b-chat-v0.3_platypus` trained using STEM and logic based dataset [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
### Training Procedure
`lgaalves/tinyllama-1.1b-chat-v0.3_platypus` was instruction fine-tuned using LoRA on 1 V100 GPU on Google Colab. It took about 43 minutes to train it.
# Intended uses, limitations & biases
You can use the raw model for text generation or fine-tune it to a downstream task. The model was not extensively tested and may produce false information. It contains a lot of unfiltered content from the internet, which is far from neutral.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lgaalves__tinyllama-1.1b-chat-v0.3_platypus)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 30.28 |
| ARC (25-shot) | 30.29 |
| HellaSwag (10-shot) | 55.12 |
| MMLU (5-shot) | 26.13 |
| TruthfulQA (0-shot) | 39.15 |
| Winogrande (5-shot) | 55.8 |
| GSM8K (5-shot) | 0.53 |
| DROP (3-shot) | 4.94 |