zephyr-7b-sft-full

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9934

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 16
  • total_train_batch_size: 256
  • total_eval_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
0.9681 0.1845 100 0.9788
0.9962 0.3690 200 1.0030
0.9917 0.5535 300 1.0008
0.9652 0.7380 400 0.9939
0.9666 0.9225 500 0.9816
0.7366 1.1070 600 0.9852
0.7228 1.2915 700 0.9835
0.7319 1.4760 800 0.9644
0.7177 1.6605 900 0.9529
0.7095 1.8450 1000 0.9394
0.4465 2.0295 1100 0.9917
0.4341 2.2140 1200 0.9979
0.432 2.3985 1300 0.9954
0.4301 2.5830 1400 0.9943
0.4361 2.7675 1500 0.9931
0.4256 2.9520 1600 0.9934

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.2+rocm5.7
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
38
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for li-muyang/zephyr-7b-sft-full

Finetuned
(816)
this model
Quantizations
1 model

Dataset used to train li-muyang/zephyr-7b-sft-full