liddlefish's picture
Add new SentenceTransformer model.
d660103 verified
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
model-index:
- name: bge-small-en-v1.5
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 73.79104477611939
- type: ap
value: 37.21923821573361
- type: f1
value: 68.0914945617093
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 92.75377499999999
- type: ap
value: 89.46766124546022
- type: f1
value: 92.73884001331487
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 46.986
- type: f1
value: 46.55936786727896
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 35.846000000000004
- type: map_at_10
value: 51.388
- type: map_at_100
value: 52.132999999999996
- type: map_at_1000
value: 52.141000000000005
- type: map_at_3
value: 47.037
- type: map_at_5
value: 49.579
- type: mrr_at_1
value: 36.558
- type: mrr_at_10
value: 51.658
- type: mrr_at_100
value: 52.402
- type: mrr_at_1000
value: 52.410000000000004
- type: mrr_at_3
value: 47.345
- type: mrr_at_5
value: 49.797999999999995
- type: ndcg_at_1
value: 35.846000000000004
- type: ndcg_at_10
value: 59.550000000000004
- type: ndcg_at_100
value: 62.596
- type: ndcg_at_1000
value: 62.759
- type: ndcg_at_3
value: 50.666999999999994
- type: ndcg_at_5
value: 55.228
- type: precision_at_1
value: 35.846000000000004
- type: precision_at_10
value: 8.542
- type: precision_at_100
value: 0.984
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 20.389
- type: precision_at_5
value: 14.438
- type: recall_at_1
value: 35.846000000000004
- type: recall_at_10
value: 85.42
- type: recall_at_100
value: 98.43499999999999
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 61.166
- type: recall_at_5
value: 72.191
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 47.402770198163594
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 40.01545436974177
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 62.586465273207196
- type: mrr
value: 74.42169019038825
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 85.1891186537969
- type: cos_sim_spearman
value: 83.75492046087288
- type: euclidean_pearson
value: 84.11766204805357
- type: euclidean_spearman
value: 84.01456493126516
- type: manhattan_pearson
value: 84.2132950502772
- type: manhattan_spearman
value: 83.89227298813377
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 85.74025974025975
- type: f1
value: 85.71493566466381
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 38.467181385006434
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 34.719496037339056
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 29.587000000000003
- type: map_at_10
value: 41.114
- type: map_at_100
value: 42.532
- type: map_at_1000
value: 42.661
- type: map_at_3
value: 37.483
- type: map_at_5
value: 39.652
- type: mrr_at_1
value: 36.338
- type: mrr_at_10
value: 46.763
- type: mrr_at_100
value: 47.393
- type: mrr_at_1000
value: 47.445
- type: mrr_at_3
value: 43.538
- type: mrr_at_5
value: 45.556000000000004
- type: ndcg_at_1
value: 36.338
- type: ndcg_at_10
value: 47.658
- type: ndcg_at_100
value: 52.824000000000005
- type: ndcg_at_1000
value: 54.913999999999994
- type: ndcg_at_3
value: 41.989
- type: ndcg_at_5
value: 44.944
- type: precision_at_1
value: 36.338
- type: precision_at_10
value: 9.156
- type: precision_at_100
value: 1.4789999999999999
- type: precision_at_1000
value: 0.196
- type: precision_at_3
value: 20.076
- type: precision_at_5
value: 14.85
- type: recall_at_1
value: 29.587000000000003
- type: recall_at_10
value: 60.746
- type: recall_at_100
value: 82.157
- type: recall_at_1000
value: 95.645
- type: recall_at_3
value: 44.821
- type: recall_at_5
value: 52.819
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.239
- type: map_at_10
value: 39.989000000000004
- type: map_at_100
value: 41.196
- type: map_at_1000
value: 41.325
- type: map_at_3
value: 37.261
- type: map_at_5
value: 38.833
- type: mrr_at_1
value: 37.516
- type: mrr_at_10
value: 46.177
- type: mrr_at_100
value: 46.806
- type: mrr_at_1000
value: 46.849000000000004
- type: mrr_at_3
value: 44.002
- type: mrr_at_5
value: 45.34
- type: ndcg_at_1
value: 37.516
- type: ndcg_at_10
value: 45.586
- type: ndcg_at_100
value: 49.897000000000006
- type: ndcg_at_1000
value: 51.955
- type: ndcg_at_3
value: 41.684
- type: ndcg_at_5
value: 43.617
- type: precision_at_1
value: 37.516
- type: precision_at_10
value: 8.522
- type: precision_at_100
value: 1.374
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 20.105999999999998
- type: precision_at_5
value: 14.152999999999999
- type: recall_at_1
value: 30.239
- type: recall_at_10
value: 55.03
- type: recall_at_100
value: 73.375
- type: recall_at_1000
value: 86.29599999999999
- type: recall_at_3
value: 43.269000000000005
- type: recall_at_5
value: 48.878
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 38.338
- type: map_at_10
value: 50.468999999999994
- type: map_at_100
value: 51.553000000000004
- type: map_at_1000
value: 51.608
- type: map_at_3
value: 47.107
- type: map_at_5
value: 49.101
- type: mrr_at_1
value: 44.201
- type: mrr_at_10
value: 54.057
- type: mrr_at_100
value: 54.764
- type: mrr_at_1000
value: 54.791000000000004
- type: mrr_at_3
value: 51.56699999999999
- type: mrr_at_5
value: 53.05
- type: ndcg_at_1
value: 44.201
- type: ndcg_at_10
value: 56.379000000000005
- type: ndcg_at_100
value: 60.645
- type: ndcg_at_1000
value: 61.73499999999999
- type: ndcg_at_3
value: 50.726000000000006
- type: ndcg_at_5
value: 53.58500000000001
- type: precision_at_1
value: 44.201
- type: precision_at_10
value: 9.141
- type: precision_at_100
value: 1.216
- type: precision_at_1000
value: 0.135
- type: precision_at_3
value: 22.654
- type: precision_at_5
value: 15.723999999999998
- type: recall_at_1
value: 38.338
- type: recall_at_10
value: 70.30499999999999
- type: recall_at_100
value: 88.77199999999999
- type: recall_at_1000
value: 96.49799999999999
- type: recall_at_3
value: 55.218
- type: recall_at_5
value: 62.104000000000006
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.682
- type: map_at_10
value: 33.498
- type: map_at_100
value: 34.461000000000006
- type: map_at_1000
value: 34.544000000000004
- type: map_at_3
value: 30.503999999999998
- type: map_at_5
value: 32.216
- type: mrr_at_1
value: 27.683999999999997
- type: mrr_at_10
value: 35.467999999999996
- type: mrr_at_100
value: 36.32
- type: mrr_at_1000
value: 36.386
- type: mrr_at_3
value: 32.618
- type: mrr_at_5
value: 34.262
- type: ndcg_at_1
value: 27.683999999999997
- type: ndcg_at_10
value: 38.378
- type: ndcg_at_100
value: 43.288
- type: ndcg_at_1000
value: 45.413
- type: ndcg_at_3
value: 32.586
- type: ndcg_at_5
value: 35.499
- type: precision_at_1
value: 27.683999999999997
- type: precision_at_10
value: 5.864
- type: precision_at_100
value: 0.882
- type: precision_at_1000
value: 0.11
- type: precision_at_3
value: 13.446
- type: precision_at_5
value: 9.718
- type: recall_at_1
value: 25.682
- type: recall_at_10
value: 51.712
- type: recall_at_100
value: 74.446
- type: recall_at_1000
value: 90.472
- type: recall_at_3
value: 36.236000000000004
- type: recall_at_5
value: 43.234
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.073999999999998
- type: map_at_10
value: 24.352999999999998
- type: map_at_100
value: 25.438
- type: map_at_1000
value: 25.545
- type: map_at_3
value: 21.614
- type: map_at_5
value: 23.104
- type: mrr_at_1
value: 19.776
- type: mrr_at_10
value: 28.837000000000003
- type: mrr_at_100
value: 29.755
- type: mrr_at_1000
value: 29.817
- type: mrr_at_3
value: 26.201999999999998
- type: mrr_at_5
value: 27.714
- type: ndcg_at_1
value: 19.776
- type: ndcg_at_10
value: 29.701
- type: ndcg_at_100
value: 35.307
- type: ndcg_at_1000
value: 37.942
- type: ndcg_at_3
value: 24.764
- type: ndcg_at_5
value: 27.025
- type: precision_at_1
value: 19.776
- type: precision_at_10
value: 5.659
- type: precision_at_100
value: 0.971
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 12.065
- type: precision_at_5
value: 8.905000000000001
- type: recall_at_1
value: 16.073999999999998
- type: recall_at_10
value: 41.647
- type: recall_at_100
value: 66.884
- type: recall_at_1000
value: 85.91499999999999
- type: recall_at_3
value: 27.916
- type: recall_at_5
value: 33.729
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.444999999999997
- type: map_at_10
value: 38.218999999999994
- type: map_at_100
value: 39.595
- type: map_at_1000
value: 39.709
- type: map_at_3
value: 35.586
- type: map_at_5
value: 36.895
- type: mrr_at_1
value: 34.841
- type: mrr_at_10
value: 44.106
- type: mrr_at_100
value: 44.98
- type: mrr_at_1000
value: 45.03
- type: mrr_at_3
value: 41.979
- type: mrr_at_5
value: 43.047999999999995
- type: ndcg_at_1
value: 34.841
- type: ndcg_at_10
value: 43.922
- type: ndcg_at_100
value: 49.504999999999995
- type: ndcg_at_1000
value: 51.675000000000004
- type: ndcg_at_3
value: 39.858
- type: ndcg_at_5
value: 41.408
- type: precision_at_1
value: 34.841
- type: precision_at_10
value: 7.872999999999999
- type: precision_at_100
value: 1.2449999999999999
- type: precision_at_1000
value: 0.161
- type: precision_at_3
value: 18.993
- type: precision_at_5
value: 13.032
- type: recall_at_1
value: 28.444999999999997
- type: recall_at_10
value: 54.984
- type: recall_at_100
value: 78.342
- type: recall_at_1000
value: 92.77
- type: recall_at_3
value: 42.842999999999996
- type: recall_at_5
value: 47.247
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.072
- type: map_at_10
value: 32.354
- type: map_at_100
value: 33.800000000000004
- type: map_at_1000
value: 33.908
- type: map_at_3
value: 29.232000000000003
- type: map_at_5
value: 31.049
- type: mrr_at_1
value: 29.110000000000003
- type: mrr_at_10
value: 38.03
- type: mrr_at_100
value: 39.032
- type: mrr_at_1000
value: 39.086999999999996
- type: mrr_at_3
value: 35.407
- type: mrr_at_5
value: 36.76
- type: ndcg_at_1
value: 29.110000000000003
- type: ndcg_at_10
value: 38.231
- type: ndcg_at_100
value: 44.425
- type: ndcg_at_1000
value: 46.771
- type: ndcg_at_3
value: 33.095
- type: ndcg_at_5
value: 35.459
- type: precision_at_1
value: 29.110000000000003
- type: precision_at_10
value: 7.215000000000001
- type: precision_at_100
value: 1.2109999999999999
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 16.058
- type: precision_at_5
value: 11.644
- type: recall_at_1
value: 23.072
- type: recall_at_10
value: 50.285999999999994
- type: recall_at_100
value: 76.596
- type: recall_at_1000
value: 92.861
- type: recall_at_3
value: 35.702
- type: recall_at_5
value: 42.152
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.937916666666666
- type: map_at_10
value: 33.755250000000004
- type: map_at_100
value: 34.955999999999996
- type: map_at_1000
value: 35.070499999999996
- type: map_at_3
value: 30.98708333333333
- type: map_at_5
value: 32.51491666666666
- type: mrr_at_1
value: 29.48708333333333
- type: mrr_at_10
value: 37.92183333333334
- type: mrr_at_100
value: 38.76583333333333
- type: mrr_at_1000
value: 38.82466666666667
- type: mrr_at_3
value: 35.45125
- type: mrr_at_5
value: 36.827000000000005
- type: ndcg_at_1
value: 29.48708333333333
- type: ndcg_at_10
value: 39.05225
- type: ndcg_at_100
value: 44.25983333333334
- type: ndcg_at_1000
value: 46.568333333333335
- type: ndcg_at_3
value: 34.271583333333325
- type: ndcg_at_5
value: 36.483916666666666
- type: precision_at_1
value: 29.48708333333333
- type: precision_at_10
value: 6.865749999999999
- type: precision_at_100
value: 1.1195833333333332
- type: precision_at_1000
value: 0.15058333333333335
- type: precision_at_3
value: 15.742083333333333
- type: precision_at_5
value: 11.221916666666667
- type: recall_at_1
value: 24.937916666666666
- type: recall_at_10
value: 50.650416666666665
- type: recall_at_100
value: 73.55383333333334
- type: recall_at_1000
value: 89.61691666666667
- type: recall_at_3
value: 37.27808333333334
- type: recall_at_5
value: 42.99475
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.947
- type: map_at_10
value: 30.575000000000003
- type: map_at_100
value: 31.465
- type: map_at_1000
value: 31.558000000000003
- type: map_at_3
value: 28.814
- type: map_at_5
value: 29.738999999999997
- type: mrr_at_1
value: 26.994
- type: mrr_at_10
value: 33.415
- type: mrr_at_100
value: 34.18
- type: mrr_at_1000
value: 34.245
- type: mrr_at_3
value: 31.621
- type: mrr_at_5
value: 32.549
- type: ndcg_at_1
value: 26.994
- type: ndcg_at_10
value: 34.482
- type: ndcg_at_100
value: 38.915
- type: ndcg_at_1000
value: 41.355
- type: ndcg_at_3
value: 31.139
- type: ndcg_at_5
value: 32.589
- type: precision_at_1
value: 26.994
- type: precision_at_10
value: 5.322
- type: precision_at_100
value: 0.8160000000000001
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 13.344000000000001
- type: precision_at_5
value: 8.988
- type: recall_at_1
value: 23.947
- type: recall_at_10
value: 43.647999999999996
- type: recall_at_100
value: 63.851
- type: recall_at_1000
value: 82.0
- type: recall_at_3
value: 34.288000000000004
- type: recall_at_5
value: 38.117000000000004
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.197
- type: map_at_10
value: 22.968
- type: map_at_100
value: 24.095
- type: map_at_1000
value: 24.217
- type: map_at_3
value: 20.771
- type: map_at_5
value: 21.995
- type: mrr_at_1
value: 19.511
- type: mrr_at_10
value: 26.55
- type: mrr_at_100
value: 27.500999999999998
- type: mrr_at_1000
value: 27.578999999999997
- type: mrr_at_3
value: 24.421
- type: mrr_at_5
value: 25.604
- type: ndcg_at_1
value: 19.511
- type: ndcg_at_10
value: 27.386
- type: ndcg_at_100
value: 32.828
- type: ndcg_at_1000
value: 35.739
- type: ndcg_at_3
value: 23.405
- type: ndcg_at_5
value: 25.255
- type: precision_at_1
value: 19.511
- type: precision_at_10
value: 5.017
- type: precision_at_100
value: 0.91
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 11.023
- type: precision_at_5
value: 8.025
- type: recall_at_1
value: 16.197
- type: recall_at_10
value: 37.09
- type: recall_at_100
value: 61.778
- type: recall_at_1000
value: 82.56599999999999
- type: recall_at_3
value: 26.034000000000002
- type: recall_at_5
value: 30.762
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.41
- type: map_at_10
value: 33.655
- type: map_at_100
value: 34.892
- type: map_at_1000
value: 34.995
- type: map_at_3
value: 30.94
- type: map_at_5
value: 32.303
- type: mrr_at_1
value: 29.477999999999998
- type: mrr_at_10
value: 37.443
- type: mrr_at_100
value: 38.383
- type: mrr_at_1000
value: 38.440000000000005
- type: mrr_at_3
value: 34.949999999999996
- type: mrr_at_5
value: 36.228
- type: ndcg_at_1
value: 29.477999999999998
- type: ndcg_at_10
value: 38.769
- type: ndcg_at_100
value: 44.245000000000005
- type: ndcg_at_1000
value: 46.593
- type: ndcg_at_3
value: 33.623
- type: ndcg_at_5
value: 35.766
- type: precision_at_1
value: 29.477999999999998
- type: precision_at_10
value: 6.455
- type: precision_at_100
value: 1.032
- type: precision_at_1000
value: 0.135
- type: precision_at_3
value: 14.893999999999998
- type: precision_at_5
value: 10.485
- type: recall_at_1
value: 25.41
- type: recall_at_10
value: 50.669
- type: recall_at_100
value: 74.084
- type: recall_at_1000
value: 90.435
- type: recall_at_3
value: 36.679
- type: recall_at_5
value: 41.94
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.339
- type: map_at_10
value: 31.852000000000004
- type: map_at_100
value: 33.411
- type: map_at_1000
value: 33.62
- type: map_at_3
value: 28.929
- type: map_at_5
value: 30.542
- type: mrr_at_1
value: 28.063
- type: mrr_at_10
value: 36.301
- type: mrr_at_100
value: 37.288
- type: mrr_at_1000
value: 37.349
- type: mrr_at_3
value: 33.663
- type: mrr_at_5
value: 35.165
- type: ndcg_at_1
value: 28.063
- type: ndcg_at_10
value: 37.462
- type: ndcg_at_100
value: 43.620999999999995
- type: ndcg_at_1000
value: 46.211
- type: ndcg_at_3
value: 32.68
- type: ndcg_at_5
value: 34.981
- type: precision_at_1
value: 28.063
- type: precision_at_10
value: 7.1739999999999995
- type: precision_at_100
value: 1.486
- type: precision_at_1000
value: 0.23500000000000001
- type: precision_at_3
value: 15.217
- type: precision_at_5
value: 11.265
- type: recall_at_1
value: 23.339
- type: recall_at_10
value: 48.376999999999995
- type: recall_at_100
value: 76.053
- type: recall_at_1000
value: 92.455
- type: recall_at_3
value: 34.735
- type: recall_at_5
value: 40.71
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 18.925
- type: map_at_10
value: 26.017000000000003
- type: map_at_100
value: 27.034000000000002
- type: map_at_1000
value: 27.156000000000002
- type: map_at_3
value: 23.604
- type: map_at_5
value: 24.75
- type: mrr_at_1
value: 20.333000000000002
- type: mrr_at_10
value: 27.915
- type: mrr_at_100
value: 28.788000000000004
- type: mrr_at_1000
value: 28.877999999999997
- type: mrr_at_3
value: 25.446999999999996
- type: mrr_at_5
value: 26.648
- type: ndcg_at_1
value: 20.333000000000002
- type: ndcg_at_10
value: 30.673000000000002
- type: ndcg_at_100
value: 35.618
- type: ndcg_at_1000
value: 38.517
- type: ndcg_at_3
value: 25.71
- type: ndcg_at_5
value: 27.679
- type: precision_at_1
value: 20.333000000000002
- type: precision_at_10
value: 4.9910000000000005
- type: precision_at_100
value: 0.8130000000000001
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 11.029
- type: precision_at_5
value: 7.8740000000000006
- type: recall_at_1
value: 18.925
- type: recall_at_10
value: 43.311
- type: recall_at_100
value: 66.308
- type: recall_at_1000
value: 87.49
- type: recall_at_3
value: 29.596
- type: recall_at_5
value: 34.245
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 13.714
- type: map_at_10
value: 23.194
- type: map_at_100
value: 24.976000000000003
- type: map_at_1000
value: 25.166
- type: map_at_3
value: 19.709
- type: map_at_5
value: 21.523999999999997
- type: mrr_at_1
value: 30.619000000000003
- type: mrr_at_10
value: 42.563
- type: mrr_at_100
value: 43.386
- type: mrr_at_1000
value: 43.423
- type: mrr_at_3
value: 39.555
- type: mrr_at_5
value: 41.268
- type: ndcg_at_1
value: 30.619000000000003
- type: ndcg_at_10
value: 31.836
- type: ndcg_at_100
value: 38.652
- type: ndcg_at_1000
value: 42.088
- type: ndcg_at_3
value: 26.733
- type: ndcg_at_5
value: 28.435
- type: precision_at_1
value: 30.619000000000003
- type: precision_at_10
value: 9.751999999999999
- type: precision_at_100
value: 1.71
- type: precision_at_1000
value: 0.23500000000000001
- type: precision_at_3
value: 19.935
- type: precision_at_5
value: 14.984
- type: recall_at_1
value: 13.714
- type: recall_at_10
value: 37.26
- type: recall_at_100
value: 60.546
- type: recall_at_1000
value: 79.899
- type: recall_at_3
value: 24.325
- type: recall_at_5
value: 29.725
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.462
- type: map_at_10
value: 18.637
- type: map_at_100
value: 26.131999999999998
- type: map_at_1000
value: 27.607
- type: map_at_3
value: 13.333
- type: map_at_5
value: 15.654000000000002
- type: mrr_at_1
value: 66.25
- type: mrr_at_10
value: 74.32600000000001
- type: mrr_at_100
value: 74.60900000000001
- type: mrr_at_1000
value: 74.62
- type: mrr_at_3
value: 72.667
- type: mrr_at_5
value: 73.817
- type: ndcg_at_1
value: 53.87499999999999
- type: ndcg_at_10
value: 40.028999999999996
- type: ndcg_at_100
value: 44.199
- type: ndcg_at_1000
value: 51.629999999999995
- type: ndcg_at_3
value: 44.113
- type: ndcg_at_5
value: 41.731
- type: precision_at_1
value: 66.25
- type: precision_at_10
value: 31.900000000000002
- type: precision_at_100
value: 10.043000000000001
- type: precision_at_1000
value: 1.926
- type: precision_at_3
value: 47.417
- type: precision_at_5
value: 40.65
- type: recall_at_1
value: 8.462
- type: recall_at_10
value: 24.293
- type: recall_at_100
value: 50.146
- type: recall_at_1000
value: 74.034
- type: recall_at_3
value: 14.967
- type: recall_at_5
value: 18.682000000000002
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 47.84499999999999
- type: f1
value: 42.48106691979349
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 74.034
- type: map_at_10
value: 82.76
- type: map_at_100
value: 82.968
- type: map_at_1000
value: 82.98299999999999
- type: map_at_3
value: 81.768
- type: map_at_5
value: 82.418
- type: mrr_at_1
value: 80.048
- type: mrr_at_10
value: 87.64999999999999
- type: mrr_at_100
value: 87.712
- type: mrr_at_1000
value: 87.713
- type: mrr_at_3
value: 87.01100000000001
- type: mrr_at_5
value: 87.466
- type: ndcg_at_1
value: 80.048
- type: ndcg_at_10
value: 86.643
- type: ndcg_at_100
value: 87.361
- type: ndcg_at_1000
value: 87.606
- type: ndcg_at_3
value: 85.137
- type: ndcg_at_5
value: 86.016
- type: precision_at_1
value: 80.048
- type: precision_at_10
value: 10.372
- type: precision_at_100
value: 1.093
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 32.638
- type: precision_at_5
value: 20.177
- type: recall_at_1
value: 74.034
- type: recall_at_10
value: 93.769
- type: recall_at_100
value: 96.569
- type: recall_at_1000
value: 98.039
- type: recall_at_3
value: 89.581
- type: recall_at_5
value: 91.906
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 20.5
- type: map_at_10
value: 32.857
- type: map_at_100
value: 34.589
- type: map_at_1000
value: 34.778
- type: map_at_3
value: 29.160999999999998
- type: map_at_5
value: 31.033
- type: mrr_at_1
value: 40.123
- type: mrr_at_10
value: 48.776
- type: mrr_at_100
value: 49.495
- type: mrr_at_1000
value: 49.539
- type: mrr_at_3
value: 46.605000000000004
- type: mrr_at_5
value: 47.654
- type: ndcg_at_1
value: 40.123
- type: ndcg_at_10
value: 40.343
- type: ndcg_at_100
value: 46.56
- type: ndcg_at_1000
value: 49.777
- type: ndcg_at_3
value: 37.322
- type: ndcg_at_5
value: 37.791000000000004
- type: precision_at_1
value: 40.123
- type: precision_at_10
value: 11.08
- type: precision_at_100
value: 1.752
- type: precision_at_1000
value: 0.232
- type: precision_at_3
value: 24.897
- type: precision_at_5
value: 17.809
- type: recall_at_1
value: 20.5
- type: recall_at_10
value: 46.388
- type: recall_at_100
value: 69.552
- type: recall_at_1000
value: 89.011
- type: recall_at_3
value: 33.617999999999995
- type: recall_at_5
value: 38.211
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 39.135999999999996
- type: map_at_10
value: 61.673
- type: map_at_100
value: 62.562
- type: map_at_1000
value: 62.62
- type: map_at_3
value: 58.467999999999996
- type: map_at_5
value: 60.463
- type: mrr_at_1
value: 78.271
- type: mrr_at_10
value: 84.119
- type: mrr_at_100
value: 84.29299999999999
- type: mrr_at_1000
value: 84.299
- type: mrr_at_3
value: 83.18900000000001
- type: mrr_at_5
value: 83.786
- type: ndcg_at_1
value: 78.271
- type: ndcg_at_10
value: 69.935
- type: ndcg_at_100
value: 73.01299999999999
- type: ndcg_at_1000
value: 74.126
- type: ndcg_at_3
value: 65.388
- type: ndcg_at_5
value: 67.906
- type: precision_at_1
value: 78.271
- type: precision_at_10
value: 14.562
- type: precision_at_100
value: 1.6969999999999998
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 41.841
- type: precision_at_5
value: 27.087
- type: recall_at_1
value: 39.135999999999996
- type: recall_at_10
value: 72.809
- type: recall_at_100
value: 84.86200000000001
- type: recall_at_1000
value: 92.208
- type: recall_at_3
value: 62.76199999999999
- type: recall_at_5
value: 67.718
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 90.60600000000001
- type: ap
value: 86.6579587804335
- type: f1
value: 90.5938853929307
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 21.852
- type: map_at_10
value: 33.982
- type: map_at_100
value: 35.116
- type: map_at_1000
value: 35.167
- type: map_at_3
value: 30.134
- type: map_at_5
value: 32.340999999999994
- type: mrr_at_1
value: 22.479
- type: mrr_at_10
value: 34.594
- type: mrr_at_100
value: 35.672
- type: mrr_at_1000
value: 35.716
- type: mrr_at_3
value: 30.84
- type: mrr_at_5
value: 32.998
- type: ndcg_at_1
value: 22.493
- type: ndcg_at_10
value: 40.833000000000006
- type: ndcg_at_100
value: 46.357
- type: ndcg_at_1000
value: 47.637
- type: ndcg_at_3
value: 32.995999999999995
- type: ndcg_at_5
value: 36.919000000000004
- type: precision_at_1
value: 22.493
- type: precision_at_10
value: 6.465999999999999
- type: precision_at_100
value: 0.9249999999999999
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.030999999999999
- type: precision_at_5
value: 10.413
- type: recall_at_1
value: 21.852
- type: recall_at_10
value: 61.934999999999995
- type: recall_at_100
value: 87.611
- type: recall_at_1000
value: 97.441
- type: recall_at_3
value: 40.583999999999996
- type: recall_at_5
value: 49.992999999999995
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.36069311445507
- type: f1
value: 93.16456330371453
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 74.74692202462381
- type: f1
value: 58.17903579421599
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.80833893745796
- type: f1
value: 72.70786592684664
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.69872225958305
- type: f1
value: 78.61626934504731
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 33.058658628717694
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 30.85561739360599
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.290259910144385
- type: mrr
value: 32.44223046102856
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.288
- type: map_at_10
value: 12.267999999999999
- type: map_at_100
value: 15.557000000000002
- type: map_at_1000
value: 16.98
- type: map_at_3
value: 8.866
- type: map_at_5
value: 10.418
- type: mrr_at_1
value: 43.653
- type: mrr_at_10
value: 52.681
- type: mrr_at_100
value: 53.315999999999995
- type: mrr_at_1000
value: 53.357
- type: mrr_at_3
value: 51.393
- type: mrr_at_5
value: 51.903999999999996
- type: ndcg_at_1
value: 42.415000000000006
- type: ndcg_at_10
value: 34.305
- type: ndcg_at_100
value: 30.825999999999997
- type: ndcg_at_1000
value: 39.393
- type: ndcg_at_3
value: 39.931
- type: ndcg_at_5
value: 37.519999999999996
- type: precision_at_1
value: 43.653
- type: precision_at_10
value: 25.728
- type: precision_at_100
value: 7.932
- type: precision_at_1000
value: 2.07
- type: precision_at_3
value: 38.184000000000005
- type: precision_at_5
value: 32.879000000000005
- type: recall_at_1
value: 5.288
- type: recall_at_10
value: 16.195
- type: recall_at_100
value: 31.135
- type: recall_at_1000
value: 61.531000000000006
- type: recall_at_3
value: 10.313
- type: recall_at_5
value: 12.754999999999999
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.216
- type: map_at_10
value: 42.588
- type: map_at_100
value: 43.702999999999996
- type: map_at_1000
value: 43.739
- type: map_at_3
value: 38.177
- type: map_at_5
value: 40.754000000000005
- type: mrr_at_1
value: 31.866
- type: mrr_at_10
value: 45.189
- type: mrr_at_100
value: 46.056000000000004
- type: mrr_at_1000
value: 46.081
- type: mrr_at_3
value: 41.526999999999994
- type: mrr_at_5
value: 43.704
- type: ndcg_at_1
value: 31.837
- type: ndcg_at_10
value: 50.178
- type: ndcg_at_100
value: 54.98800000000001
- type: ndcg_at_1000
value: 55.812
- type: ndcg_at_3
value: 41.853
- type: ndcg_at_5
value: 46.153
- type: precision_at_1
value: 31.837
- type: precision_at_10
value: 8.43
- type: precision_at_100
value: 1.1119999999999999
- type: precision_at_1000
value: 0.11900000000000001
- type: precision_at_3
value: 19.023
- type: precision_at_5
value: 13.911000000000001
- type: recall_at_1
value: 28.216
- type: recall_at_10
value: 70.8
- type: recall_at_100
value: 91.857
- type: recall_at_1000
value: 97.941
- type: recall_at_3
value: 49.196
- type: recall_at_5
value: 59.072
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.22800000000001
- type: map_at_10
value: 85.115
- type: map_at_100
value: 85.72
- type: map_at_1000
value: 85.737
- type: map_at_3
value: 82.149
- type: map_at_5
value: 84.029
- type: mrr_at_1
value: 81.96
- type: mrr_at_10
value: 88.00200000000001
- type: mrr_at_100
value: 88.088
- type: mrr_at_1000
value: 88.089
- type: mrr_at_3
value: 87.055
- type: mrr_at_5
value: 87.715
- type: ndcg_at_1
value: 82.01
- type: ndcg_at_10
value: 88.78
- type: ndcg_at_100
value: 89.91
- type: ndcg_at_1000
value: 90.013
- type: ndcg_at_3
value: 85.957
- type: ndcg_at_5
value: 87.56
- type: precision_at_1
value: 82.01
- type: precision_at_10
value: 13.462
- type: precision_at_100
value: 1.528
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.553
- type: precision_at_5
value: 24.732000000000003
- type: recall_at_1
value: 71.22800000000001
- type: recall_at_10
value: 95.69
- type: recall_at_100
value: 99.531
- type: recall_at_1000
value: 99.98
- type: recall_at_3
value: 87.632
- type: recall_at_5
value: 92.117
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 52.31768034366916
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 60.640266772723606
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.7780000000000005
- type: map_at_10
value: 12.299
- type: map_at_100
value: 14.363000000000001
- type: map_at_1000
value: 14.71
- type: map_at_3
value: 8.738999999999999
- type: map_at_5
value: 10.397
- type: mrr_at_1
value: 23.599999999999998
- type: mrr_at_10
value: 34.845
- type: mrr_at_100
value: 35.916
- type: mrr_at_1000
value: 35.973
- type: mrr_at_3
value: 31.7
- type: mrr_at_5
value: 33.535
- type: ndcg_at_1
value: 23.599999999999998
- type: ndcg_at_10
value: 20.522000000000002
- type: ndcg_at_100
value: 28.737000000000002
- type: ndcg_at_1000
value: 34.596
- type: ndcg_at_3
value: 19.542
- type: ndcg_at_5
value: 16.958000000000002
- type: precision_at_1
value: 23.599999999999998
- type: precision_at_10
value: 10.67
- type: precision_at_100
value: 2.259
- type: precision_at_1000
value: 0.367
- type: precision_at_3
value: 18.333
- type: precision_at_5
value: 14.879999999999999
- type: recall_at_1
value: 4.7780000000000005
- type: recall_at_10
value: 21.617
- type: recall_at_100
value: 45.905
- type: recall_at_1000
value: 74.42
- type: recall_at_3
value: 11.148
- type: recall_at_5
value: 15.082999999999998
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 83.22372750297885
- type: cos_sim_spearman
value: 79.40972617119405
- type: euclidean_pearson
value: 80.6101072020434
- type: euclidean_spearman
value: 79.53844217225202
- type: manhattan_pearson
value: 80.57265975286111
- type: manhattan_spearman
value: 79.46335611792958
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 85.43713315520749
- type: cos_sim_spearman
value: 77.44128693329532
- type: euclidean_pearson
value: 81.63869928101123
- type: euclidean_spearman
value: 77.29512977961515
- type: manhattan_pearson
value: 81.63704185566183
- type: manhattan_spearman
value: 77.29909412738657
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 81.59451537860527
- type: cos_sim_spearman
value: 82.97994638856723
- type: euclidean_pearson
value: 82.89478688288412
- type: euclidean_spearman
value: 83.58740751053104
- type: manhattan_pearson
value: 82.69140840941608
- type: manhattan_spearman
value: 83.33665956040555
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 82.00756527711764
- type: cos_sim_spearman
value: 81.83560996841379
- type: euclidean_pearson
value: 82.07684151976518
- type: euclidean_spearman
value: 82.00913052060511
- type: manhattan_pearson
value: 82.05690778488794
- type: manhattan_spearman
value: 82.02260252019525
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 86.13710262895447
- type: cos_sim_spearman
value: 87.26412811156248
- type: euclidean_pearson
value: 86.94151453230228
- type: euclidean_spearman
value: 87.5363796699571
- type: manhattan_pearson
value: 86.86989424083748
- type: manhattan_spearman
value: 87.47315940781353
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.0230597603627
- type: cos_sim_spearman
value: 84.93344499318864
- type: euclidean_pearson
value: 84.23754743431141
- type: euclidean_spearman
value: 85.09707376597099
- type: manhattan_pearson
value: 84.04325160987763
- type: manhattan_spearman
value: 84.89353071339909
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 86.75620824563921
- type: cos_sim_spearman
value: 87.15065513706398
- type: euclidean_pearson
value: 88.26281533633521
- type: euclidean_spearman
value: 87.51963738643983
- type: manhattan_pearson
value: 88.25599267618065
- type: manhattan_spearman
value: 87.58048736047483
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 64.74645319195137
- type: cos_sim_spearman
value: 65.29996325037214
- type: euclidean_pearson
value: 67.04297794086443
- type: euclidean_spearman
value: 65.43841726694343
- type: manhattan_pearson
value: 67.39459955690904
- type: manhattan_spearman
value: 65.92864704413651
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 84.31291020270801
- type: cos_sim_spearman
value: 85.86473738688068
- type: euclidean_pearson
value: 85.65537275064152
- type: euclidean_spearman
value: 86.13087454209642
- type: manhattan_pearson
value: 85.43946955047609
- type: manhattan_spearman
value: 85.91568175344916
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 85.93798118350695
- type: mrr
value: 95.93536274908824
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 57.594
- type: map_at_10
value: 66.81899999999999
- type: map_at_100
value: 67.368
- type: map_at_1000
value: 67.4
- type: map_at_3
value: 64.061
- type: map_at_5
value: 65.47
- type: mrr_at_1
value: 60.667
- type: mrr_at_10
value: 68.219
- type: mrr_at_100
value: 68.655
- type: mrr_at_1000
value: 68.684
- type: mrr_at_3
value: 66.22200000000001
- type: mrr_at_5
value: 67.289
- type: ndcg_at_1
value: 60.667
- type: ndcg_at_10
value: 71.275
- type: ndcg_at_100
value: 73.642
- type: ndcg_at_1000
value: 74.373
- type: ndcg_at_3
value: 66.521
- type: ndcg_at_5
value: 68.581
- type: precision_at_1
value: 60.667
- type: precision_at_10
value: 9.433
- type: precision_at_100
value: 1.0699999999999998
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 25.556
- type: precision_at_5
value: 16.8
- type: recall_at_1
value: 57.594
- type: recall_at_10
value: 83.622
- type: recall_at_100
value: 94.167
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 70.64399999999999
- type: recall_at_5
value: 75.983
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.85841584158416
- type: cos_sim_ap
value: 96.66996142314342
- type: cos_sim_f1
value: 92.83208020050125
- type: cos_sim_precision
value: 93.06532663316584
- type: cos_sim_recall
value: 92.60000000000001
- type: dot_accuracy
value: 99.85841584158416
- type: dot_ap
value: 96.6775307676576
- type: dot_f1
value: 92.69289729177312
- type: dot_precision
value: 94.77533960292581
- type: dot_recall
value: 90.7
- type: euclidean_accuracy
value: 99.86138613861387
- type: euclidean_ap
value: 96.6338454403108
- type: euclidean_f1
value: 92.92214357937311
- type: euclidean_precision
value: 93.96728016359918
- type: euclidean_recall
value: 91.9
- type: manhattan_accuracy
value: 99.86237623762376
- type: manhattan_ap
value: 96.60370449645053
- type: manhattan_f1
value: 92.91177970423253
- type: manhattan_precision
value: 94.7970863683663
- type: manhattan_recall
value: 91.10000000000001
- type: max_accuracy
value: 99.86237623762376
- type: max_ap
value: 96.6775307676576
- type: max_f1
value: 92.92214357937311
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 60.77977058695198
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 35.2725272535638
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 53.64052466362125
- type: mrr
value: 54.533067014684654
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.677624219206578
- type: cos_sim_spearman
value: 30.121368518123447
- type: dot_pearson
value: 30.69870088041608
- type: dot_spearman
value: 29.61284927093751
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.22
- type: map_at_10
value: 1.855
- type: map_at_100
value: 9.885
- type: map_at_1000
value: 23.416999999999998
- type: map_at_3
value: 0.637
- type: map_at_5
value: 1.024
- type: mrr_at_1
value: 88.0
- type: mrr_at_10
value: 93.067
- type: mrr_at_100
value: 93.067
- type: mrr_at_1000
value: 93.067
- type: mrr_at_3
value: 92.667
- type: mrr_at_5
value: 93.067
- type: ndcg_at_1
value: 82.0
- type: ndcg_at_10
value: 75.899
- type: ndcg_at_100
value: 55.115
- type: ndcg_at_1000
value: 48.368
- type: ndcg_at_3
value: 79.704
- type: ndcg_at_5
value: 78.39699999999999
- type: precision_at_1
value: 88.0
- type: precision_at_10
value: 79.60000000000001
- type: precision_at_100
value: 56.06
- type: precision_at_1000
value: 21.206
- type: precision_at_3
value: 84.667
- type: precision_at_5
value: 83.2
- type: recall_at_1
value: 0.22
- type: recall_at_10
value: 2.078
- type: recall_at_100
value: 13.297
- type: recall_at_1000
value: 44.979
- type: recall_at_3
value: 0.6689999999999999
- type: recall_at_5
value: 1.106
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.258
- type: map_at_10
value: 10.439
- type: map_at_100
value: 16.89
- type: map_at_1000
value: 18.407999999999998
- type: map_at_3
value: 5.668
- type: map_at_5
value: 7.718
- type: mrr_at_1
value: 32.653
- type: mrr_at_10
value: 51.159
- type: mrr_at_100
value: 51.714000000000006
- type: mrr_at_1000
value: 51.714000000000006
- type: mrr_at_3
value: 47.959
- type: mrr_at_5
value: 50.407999999999994
- type: ndcg_at_1
value: 29.592000000000002
- type: ndcg_at_10
value: 26.037
- type: ndcg_at_100
value: 37.924
- type: ndcg_at_1000
value: 49.126999999999995
- type: ndcg_at_3
value: 30.631999999999998
- type: ndcg_at_5
value: 28.571
- type: precision_at_1
value: 32.653
- type: precision_at_10
value: 22.857
- type: precision_at_100
value: 7.754999999999999
- type: precision_at_1000
value: 1.529
- type: precision_at_3
value: 34.014
- type: precision_at_5
value: 29.796
- type: recall_at_1
value: 2.258
- type: recall_at_10
value: 16.554
- type: recall_at_100
value: 48.439
- type: recall_at_1000
value: 82.80499999999999
- type: recall_at_3
value: 7.283
- type: recall_at_5
value: 10.732
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 69.8858
- type: ap
value: 13.835684144362109
- type: f1
value: 53.803351693244586
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 60.50650820599886
- type: f1
value: 60.84357825979259
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 48.52131044852134
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 85.59337187816654
- type: cos_sim_ap
value: 73.23925826533437
- type: cos_sim_f1
value: 67.34693877551021
- type: cos_sim_precision
value: 62.40432237730752
- type: cos_sim_recall
value: 73.13984168865434
- type: dot_accuracy
value: 85.31322644096085
- type: dot_ap
value: 72.30723963807422
- type: dot_f1
value: 66.47051612112296
- type: dot_precision
value: 62.0792305930845
- type: dot_recall
value: 71.53034300791556
- type: euclidean_accuracy
value: 85.61125350181797
- type: euclidean_ap
value: 73.32843720487845
- type: euclidean_f1
value: 67.36549633745895
- type: euclidean_precision
value: 64.60755813953489
- type: euclidean_recall
value: 70.36939313984169
- type: manhattan_accuracy
value: 85.63509566668654
- type: manhattan_ap
value: 73.16658488311325
- type: manhattan_f1
value: 67.20597386434349
- type: manhattan_precision
value: 63.60424028268551
- type: manhattan_recall
value: 71.2401055408971
- type: max_accuracy
value: 85.63509566668654
- type: max_ap
value: 73.32843720487845
- type: max_f1
value: 67.36549633745895
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.33779640625606
- type: cos_sim_ap
value: 84.83868375898157
- type: cos_sim_f1
value: 77.16506154017773
- type: cos_sim_precision
value: 74.62064005753327
- type: cos_sim_recall
value: 79.88912842623961
- type: dot_accuracy
value: 88.02732176815307
- type: dot_ap
value: 83.95089283763002
- type: dot_f1
value: 76.29635101196631
- type: dot_precision
value: 73.31771720613288
- type: dot_recall
value: 79.52725592854944
- type: euclidean_accuracy
value: 88.44452206310397
- type: euclidean_ap
value: 84.98384576824827
- type: euclidean_f1
value: 77.29311047696697
- type: euclidean_precision
value: 74.51232583065381
- type: euclidean_recall
value: 80.28949799815214
- type: manhattan_accuracy
value: 88.47362906042613
- type: manhattan_ap
value: 84.91421462218432
- type: manhattan_f1
value: 77.05107637204792
- type: manhattan_precision
value: 74.74484256243214
- type: manhattan_recall
value: 79.50415768401602
- type: max_accuracy
value: 88.47362906042613
- type: max_ap
value: 84.98384576824827
- type: max_f1
value: 77.29311047696697
license: mit
language:
- en
---
<h1 align="center">FlagEmbedding</h1>
<h4 align="center">
<p>
<a href=#model-list>Model List</a> |
<a href=#frequently-asked-questions>FAQ</a> |
<a href=#usage>Usage</a> |
<a href="#evaluation">Evaluation</a> |
<a href="#train">Train</a> |
<a href="#contact">Contact</a> |
<a href="#citation">Citation</a> |
<a href="#license">License</a>
<p>
</h4>
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
If you are looking for a model that supports more languages, longer texts, and other retrieval methods, you can try using [bge-m3](https://huggingface.co/BAAI/bge-m3).
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently:
- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
- **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
## News
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire:
- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503) :fire:
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
- 09/12/2023: New models:
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
<details>
<summary>More</summary>
<!-- ### More -->
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
</details>
## Model List
`bge` is short for `BAAI general embedding`.
| Model | Language | | Description | query instruction for retrieval [1] |
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | |
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI.
If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models .
## Frequently asked questions
<details>
<summary>1. How to fine-tune bge embedding model?</summary>
<!-- ### How to fine-tune bge embedding model? -->
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
Some suggestions:
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
</details>
<details>
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
Since we finetune the models by contrastive learning with a temperature of 0.01,
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
For downstream tasks, such as passage retrieval or semantic similarity,
**what matters is the relative order of the scores, not the absolute value.**
If you need to filter similar sentences based on a similarity threshold,
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
</details>
<details>
<summary>3. When does the query instruction need to be used</summary>
<!-- ### When does the query instruction need to be used -->
For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
No instruction only has a slight degradation in retrieval performance compared with using instruction.
So you can generate embedding without instruction in all cases for convenience.
For a retrieval task that uses short queries to find long related documents,
it is recommended to add instructions for these short queries.
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
In all cases, the documents/passages do not need to add the instruction.
</details>
## Usage
### Usage for Embedding Model
Here are some examples for using `bge` models with
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
```python
from FlagEmbedding import FlagModel
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = FlagModel('BAAI/bge-large-zh-v1.5',
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T
```
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
#### Using Sentence-Transformers
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
```
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
For s2p(short query to long passage) retrieval task,
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
But the instruction is not needed for passages.
```python
from sentence_transformers import SentenceTransformer
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
instruction = "为这个句子生成表示以用于检索相关文章:"
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
```
#### Using Langchain
You can use `bge` in langchain like this:
```python
from langchain.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-large-en-v1.5"
model_kwargs = {'device': 'cuda'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="为这个句子生成表示以用于检索相关文章:"
)
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
```
#### Using HuggingFace Transformers
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
model.eval()
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)
```
### Usage for Reranker
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
You can get a relevance score by inputting query and passage to the reranker.
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
```
#### Using Huggingface transformers
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
```
#### Usage of the ONNX files
```python
from optimum.onnxruntime import ORTModelForFeatureExtraction # type: ignore
import torch
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-small-en-v1.5')
model = AutoModel.from_pretrained('BAAI/bge-small-en-v1.5')
model_ort = ORTModelForFeatureExtraction.from_pretrained('BAAI/bge-small-en-v1.5', file_name="onnx/model.onnx")
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
model_output_ort = model_ort(**encoded_input)
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# model_output and model_output_ort are identical
```
#### Usage via infinity
Its also possible to deploy the onnx files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
Recommended is `device="cuda", engine="torch"` with flash attention on gpu, and `device="cpu", engine="optimum"` for onnx inference.
```python
import asyncio
from infinity_emb import AsyncEmbeddingEngine, EngineArgs
sentences = ["Embed this is sentence via Infinity.", "Paris is in France."]
engine = AsyncEmbeddingEngine.from_args(
EngineArgs(model_name_or_path = "BAAI/bge-small-en-v1.5", device="cpu", engine="optimum" # or engine="torch"
))
async def main():
async with engine:
embeddings, usage = await engine.embed(sentences=sentences)
asyncio.run(main())
```
## Evaluation
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
- **MTEB**:
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
- **C-MTEB**:
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
- **Reranking**:
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
## Train
### BAAI Embedding
We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
### BGE Reranker
Cross-encoder will perform full-attention over the input pair,
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
We train the cross-encoder on a multilingual pair data,
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
## Contact
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
## Citation
If you find this repository useful, please consider giving a star :star: and citation
```
@misc{bge_embedding,
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
year={2023},
eprint={2309.07597},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.