wav2vec2-base-timit-eng

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4391
  • Wer: 0.3836

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.8306 1.0 500 2.9588 1.0
2.1928 2.01 1000 1.2215 0.9355
1.1547 3.01 1500 0.9228 0.7135
0.9487 4.02 2000 0.7682 0.6513
0.8163 5.02 2500 0.7154 0.6164
0.6642 6.02 3000 0.6160 0.5919
0.6291 7.03 3500 0.6224 0.5485
0.601 8.03 4000 0.5927 0.5371
0.5443 9.04 4500 0.5757 0.5240
0.4798 10.04 5000 0.5673 0.5074
0.5142 11.04 5500 0.6138 0.5131
0.4044 12.05 6000 0.5899 0.5120
0.4214 13.05 6500 0.5443 0.4932
0.377 14.06 7000 0.6055 0.5337
0.3985 15.06 7500 0.5055 0.4812
0.3609 16.06 8000 0.5764 0.4600
0.299 17.07 8500 0.5524 0.4635
0.2984 18.07 9000 0.5272 0.4435
0.2908 19.08 9500 0.5393 0.4446
0.2714 20.08 10000 0.4548 0.4463
0.2285 21.08 10500 0.5126 0.4309
0.2245 22.09 11000 0.4770 0.4309
0.229 23.09 11500 0.4763 0.4150
0.2032 24.1 12000 0.5009 0.4127
0.2125 25.1 12500 0.4698 0.4087
0.1955 26.1 13000 0.4592 0.4001
0.1841 27.11 13500 0.4517 0.3898
0.164 28.11 14000 0.4628 0.3927
0.1687 29.12 14500 0.4391 0.3836

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 1.18.3
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.