LLaVA Model Card

Model details

Model type: The first-stage pretrained checkpoint of LLaVA. LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture.

Model date: LLaVA was trained in April 2023.

Paper or resources for more information: https://llava-vl.github.io/

License: Apache License 2.0

Where to send questions or comments about the model: https://github.com/haotian-liu/LLaVA/issues

Intended use

Primary intended uses: The primary use of LLaVA is research on large multimodal models and chatbots.

Primary intended users: The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.

Training dataset

595K filtered image-text pairs from CC3M. 150K GPT-generated multimodal instruction-following data.

Evaluation dataset

A preliminary evaluation of the model quality is conducted by creating a set of 90 visual reasoning questions from 30 unique images randomly sampled from COCO val 2014 and each is associated with three types of questions: conversational, detailed description, and complex reasoning. We utilize GPT-4 to judge the model outputs. We also evaluate our model on the ScienceQA dataset. Our synergy with GPT-4 sets a new state-of-the-art on the dataset. See https://llava-vl.github.io/ for more details.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Inference API (serverless) has been turned off for this model.

Space using liuhaotian/LLaVA-Pretrained-Projectors 1