CodeBertForCodeTrans

This model is a fine-tuned version of microsoft/codebert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0006

Model description

More information needed

Driectly uses


from transformers import AutoTokenizer, AutoModelForCausalLM
additional_special_tokens = {'additional_special_tokens':['<|begin_of_java_code|>','<|end_of_java_code|>'\
                                                           ,'<|begin_of_c-sharp_code|>','<|end_of_c-sharp_code|>',\
                                                            '<|translate|>']}
basemodel = "ljcnju/CodeBertForCodeTrans"
tokenizer = AutoTokenizer.from_pretrained(basemodel)
tokenizer.pad_token = tokenizer.eos_token
config = AutoConfig.from_pretrained(basemodel)
config.is_decoder = True
model = AutoModelForCausalLM.from_pretrained(basemodel,config=config)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device('cpu') 
model.to(device)

code = "public void serialize(LittleEndianOutput out) {out.writeShort(field_1_vcenter);}\n"
prefix =  additional_special_tokens['additional_special_tokens'][0] 
input_str = prefix + code +additional_special_tokens['additional_special_tokens'][1] + additional_special_tokens['additional_special_tokens'][2]
input = tokenizer(input_str,return_tensors = "pt")
output = model.generate(**input, max_length = 256)
outputs_str = tokenizer.decode(output[0])
print(outputs_str)

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 12354.0
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
5.7169 1.0 644 4.5075
3.0571 2.0 1288 2.1423
0.7391 3.0 1932 0.2866
0.1028 4.0 2576 0.0219
0.0158 5.0 3220 0.0047
0.0065 6.0 3864 0.0024
0.0036 7.0 4508 0.0020
0.0028 8.0 5152 0.0014
0.0018 9.0 5796 0.0010
0.0023 10.0 6440 0.0017
0.002 11.0 7084 0.0009
0.002 12.0 7728 0.0012
0.0015 13.0 8372 0.0020
0.0028 14.0 9016 0.0010
0.0015 15.0 9660 0.0007
0.0027 16.0 10304 0.0015
0.002 17.0 10948 0.0007
0.0011 18.0 11592 0.0009
0.0019 19.0 12236 0.0007
0.0003 20.0 12880 0.0006

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
16
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ljcnju/CodeBertForCodeTrans

Finetuned
(30)
this model