gemma7b-summarize-gemini1_5flash-256k

This model is a fine-tuned version of google/gemma-7b on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
0.9973 0.9988 414 2.5221
0.9036 2.0 829 2.4358
0.7651 2.9988 1243 2.3987
0.7192 4.0 1658 2.3970
0.6986 4.9988 2072 2.4163
0.6737 6.0 2487 2.4236
0.6633 6.9988 2901 2.4494
0.661 8.0 3316 2.4621
0.643 8.9988 3730 2.4791
0.6511 9.9879 4140 2.4690

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for llama-duo/gemma7b-summarize-gemini1_5flash-256k

Base model

google/gemma-7b
Adapter
(9172)
this model

Dataset used to train llama-duo/gemma7b-summarize-gemini1_5flash-256k