bakLlava-v1-hf / README.md
RaushanTurganbay's picture
update processor kwargs
a92a28c verified
|
raw
history blame
5.92 kB
---
language:
- en
datasets:
- liuhaotian/LLaVA-Instruct-150K
pipeline_tag: image-text-to-text
inference: false
arxiv: 2304.08485
license: llama2
tags:
- vision
- image-text-to-text
---
# BakLLaVA Model Card
BakLlava is a model that is derived from the original Llava architecture, that uses Mistral-7b as a text backbone.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7e345f92b20f7a38bf47a/V5lpOHWGGYJ2yPpEo_8i1.png)
Below is the model card of BakLlava model 7b, which is copied from the original BakLlava model card that you can find [here](https://huggingface.co/SkunkworksAI/BakLLaVA-1).
> BakLLaVA 1 is a Mistral 7B base augmented with the LLaVA 1.5 architecture. In this first version, we showcase that a Mistral 7B base outperforms Llama 2 13B on several benchmarks.
You can run BakLLaVA-1 on our repo. We are currently updating it to make it easier for you to finetune and inference. (https://github.com/SkunkworksAI/BakLLaVA).
> Note: BakLLaVA-1 is fully open-source but was trained on certain data that includes LLaVA's corpus which is not commercially permissive. We will fix this in the upcoming release.
> BakLLaVA 2 is cooking with a significantly larger (commercially viable) dataset and a novel architecture that expands beyond the current LLaVA method. BakLLaVA-2 will do away with the restrictions of BakLLaVA-1.
## How to use the model
First, make sure to have `transformers >= 4.35.3`.
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qsl6cd2c8gGtEW1xV5io7S8NHh-Cp1TV?usp=sharing)
Or check out our Spaces demo! [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md-dark.svg)](https://huggingface.co/spaces/llava-hf/llava-4bit)
### Using `pipeline`:
```python
from transformers import pipeline
from PIL import Image
import requests
model_id = "llava-hf/bakLlava-v1-hf"
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
# Define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image")
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
>>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
```
### Using pure `transformers`:
Below is an example script to run generation in `float16` precision on a GPU device:
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "llava-hf/bakLlava-v1-hf"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
# Define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image")
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "What are these?"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```
### Model optimization
#### 4-bit quantization through `bitsandbytes` library
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
```diff
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ load_in_4bit=True
)
```
#### Use Flash-Attention 2 to further speed-up generation
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```diff
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ use_flash_attention_2=True
).to(0)
```
# Evaluations
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7e345f92b20f7a38bf47a/qdYubrBmF7ztAHgdfkkwG.png)
# Training dataset
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
- 158K GPT-generated multimodal instruction-following data.
- 450K academic-task-oriented VQA data mixture.
- 40K ShareGPT data.
- Additional private data (permissive)
## License
Llama 2 is licensed under the LLAMA 2 Community License,
Copyright (c) Meta Platforms, Inc. All Rights Reserved.