|
--- |
|
license: other |
|
license_name: llm-jp-3-172b-instruct3-tou |
|
license_link: https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3/raw/main/LICENSE_ja |
|
language: |
|
- en |
|
- ja |
|
programming_language: |
|
- C |
|
- C++ |
|
- C# |
|
- Go |
|
- Java |
|
- JavaScript |
|
- Lua |
|
- PHP |
|
- Python |
|
- Ruby |
|
- Rust |
|
- Scala |
|
- TypeScript |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
inference: false |
|
--- |
|
# llm-jp-3-172b-instruct3 |
|
|
|
This repository provides large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). |
|
|
|
The development was partially supported by [GENIAC](https://www.meti.go.jp/policy/mono_info_service/geniac/index.html). |
|
|
|
| Model Variants | |
|
| :--- | |
|
| [llm-jp-3-1.8b](https://huggingface.co/llm-jp/llm-jp-3-1.8b) | |
|
| [llm-jp-3-1.8b-instruct](https://huggingface.co/llm-jp/llm-jp-3-1.8b-instruct) | |
|
| [llm-jp-3-3.7b](https://huggingface.co/llm-jp/llm-jp-3-3.7b) | |
|
| [llm-jp-3-3.7b-instruct](https://huggingface.co/llm-jp/llm-jp-3-3.7b-instruct) | |
|
| [llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b) | |
|
| [llm-jp-3-13b-instruct](https://huggingface.co/llm-jp/llm-jp-3-13b-instruct) | |
|
| [llm-jp-3-172b-beta1](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1) | |
|
| [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) | |
|
| [llm-jp-3-172b-beta2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2) | |
|
| [llm-jp-3-172b-beta2-instruct2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2-instruct2) | |
|
| [llm-jp-3-172b](https://huggingface.co/llm-jp/llm-jp-3-172b) | |
|
| [llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) | |
|
|
|
|
|
Checkpoints format: Hugging Face Transformers |
|
|
|
|
|
## Required Libraries and Their Versions |
|
|
|
- torch>=2.3.0 |
|
- transformers>=4.40.1 |
|
- tokenizers>=0.19.1 |
|
- accelerate>=0.29.3 |
|
- flash-attn>=2.5.8 |
|
|
|
## Usage |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-172b-instruct3") |
|
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-172b-instruct3", device_map="auto", torch_dtype=torch.bfloat16) |
|
chat = [ |
|
{"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}, |
|
{"role": "user", "content": "自然言語処理とは何か"}, |
|
] |
|
tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
output = model.generate( |
|
tokenized_input, |
|
max_new_tokens=100, |
|
do_sample=True, |
|
top_p=0.95, |
|
temperature=0.7, |
|
repetition_penalty=1.05, |
|
)[0] |
|
print(tokenizer.decode(output)) |
|
``` |
|
|
|
|
|
## Model Details |
|
|
|
- **Model type:** Transformer-based Language Model |
|
- **Total seen tokens:**: |
|
- llm-jp-3-1.8b: 2.1T |
|
- llm-jp-3-3.7b: 2.1T |
|
- llm-jp-3-13b: 2.1T |
|
- llm-jp-3-172b-beta1: 0.7T |
|
- llm-jp-3-172b-beta2: 1.4T |
|
- llm-jp-3-172b: 2.1T |
|
|
|
|Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |
|
|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |
|
|1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |
|
|3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |
|
|13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |
|
|172b|96|12288|96|4096|2,444,992,512|169,947,181,056| |
|
|
|
|
|
## Tokenizer |
|
|
|
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. |
|
The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). |
|
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). |
|
|
|
## Datasets |
|
|
|
### Pre-training |
|
|
|
The models have been pre-trained using a blend of the following datasets. |
|
|
|
| Language | Dataset | Tokens| |
|
|:---|:---|---:| |
|
|Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B |
|
||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B |
|
||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B |
|
||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B |
|
||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |
|
|English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B |
|
||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B |
|
||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B |
|
||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B |
|
||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B |
|
||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B |
|
||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |
|
|Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |
|
|Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |
|
|Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B |
|
|
|
### Post-training |
|
|
|
We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization. |
|
|
|
#### Supervised Fine-tuning |
|
The datasets used for supervised fine-tuning are as follows: |
|
|
|
| Language | Dataset | Description | |
|
|:---|:---|:---| |
|
|Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed Japanese instruction dataset. | |
|
| |[answer-carefully-002](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed instruction dataset focusing on LLMs' safety. | |
|
| |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | |
|
| |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | |
|
| |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | |
|
| |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. We used a sampled subset. | |
|
| |[wizardlm8x22b-logical-math-coding-sft_additional-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja)| A synthetic instruction dataset. We used a sampled subset. | |
|
| |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |
|
|English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | |
|
| |[FLAN](https://huggingface.co/datasets/Open-Orca/FLAN) | We used a sampled subset. | |
|
|Japanese & English|[Synthetic-JP-EN-Coding-Dataset-567k](https://huggingface.co/datasets/Aratako/Synthetic-JP-EN-Coding-Dataset-567k)| A synthetic instruction dataset. We used a sampled subset. | |
|
|
|
|
|
#### Direct Preference Optimization |
|
|
|
We used synthetic preference data to improve both the helpfulness and harmlessness of the LLM. The datasets will be made available soon. |
|
|
|
## Evaluation |
|
|
|
### llm-jp-eval (v1.4.1) |
|
|
|
We evaluated the models using 100 examples from the dev split. Note that we skipped the CG (Code Generation) task. |
|
|
|
| Model name | average | EL | FA | HE | MC | MR | MT | NLI | QA | RC | SUM | |
|
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | |
|
| [llm-jp-3-172b-beta1](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1) | 0.5174 | 0.4460 | 0.2556 | 0.3700 | 0.6400 | 0.6100 | 0.8265 | 0.5600 | 0.5720 | 0.8505 | 0.0434 | |
|
| [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) | 0.5700 | 0.4306 | 0.2292 | 0.4350 | 0.8433 | 0.6200 | 0.8228 | 0.6820 | 0.5873 | 0.8964 | 0.1529 | |
|
| [llm-jp-3-172b-beta2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2) | 0.5422 | 0.3337 | 0.2725 | 0.4700 | 0.7767 | 0.6900 | 0.8283 | 0.5960 | 0.6133 | 0.8380 | 0.0037 | |
|
| [llm-jp-3-172b-beta2-instruct2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2-instruct2) | 0.6022 | 0.5470 | 0.2665 | 0.5100 | 0.8600 | 0.7000 | 0.8392 | 0.6800 | 0.6346 | 0.8770 | 0.1076 | |
|
| [llm-jp-3-172b](https://huggingface.co/llm-jp/llm-jp-3-172b) | 0.5431 | 0.4077 | 0.2662 | 0.5150 | 0.7633 | 0.6700 | 0.8227 | 0.5740 | 0.5686 | 0.8289 | 0.0148 | |
|
| [llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) | 0.6130 | 0.5173 | 0.2711 | 0.5700 | 0.8733 | 0.7300 | 0.8437 | 0.7280 | 0.6012 | 0.8829 | 0.1121 | |
|
|
|
|
|
|
|
### Japanese MT Bench |
|
|
|
We evaluated the models using `gpt-4-0613`. Please see the [codes](https://github.com/wandb/llm-leaderboard/tree/g-leaderboard) for details. |
|
|
|
| Model name | average | coding | extraction | humanities | math | reasoning | roleplay | stem | writing | |
|
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | |
|
| [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) | 5.14 | 2.90 | 5.30 | 8.80 | 2.15 | 2.45 | 6.95 | 7.45 | 5.15 | |
|
| [llm-jp-3-172b-beta2-instruct2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2-instruct2) | 6.72 | 4.10 | 6.90 | 7.60 | 4.00 | 6.35 | 8.70 | 7.95 | 8.15 | |
|
| [llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-beta2-instruct3) | 7.57 | 4.85 | 8.55 | 9.56 | 3.75 | 7.6 | 8.1 | 8.95 | 9.2 | |
|
|
|
|
|
## Risks and Limitations |
|
|
|
The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. |
|
|
|
|
|
## Send Questions to |
|
|
|
llm-jp(at)nii.ac.jp |
|
|
|
|
|
## License |
|
|
|
See the [LICENSE](LICENSE_ja) file. |
|
|
|
## Model Card Authors |
|
|
|
*The names are listed in alphabetical order.* |
|
|
|
Hirokazu Kiyomaru and Takashi Kodama. |
|
|