SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("llm-wizard/legal-ft-arctic-l")
# Run inference
sentences = [
"What recent partnership did News Corp enter into regarding licensing content for OpenAI's applications?",
'licensing initiatives abound.”3 For example, News Corp recently partnered with OpenAI to license \nits content for certain uses in OpenAI’s applications. OpenAI users will have the benefit of \naccessing Plaintiffs’ content, whether quoted or summarized by OpenAI. This cooperative \nrelationship will allow OpenAI and Plaintiffs to experiment with new product experiences and \nrevenue models. \n15. \nGenerative AI technology can be developed in two ways. It can be developed \nlegally by recognizing the legitimate rights of copyright holders and by including in the AI business \nmodel the legitimate costs and benefits of licensing the copyrighted material, or it can be developed',
'integrity infractions. Plain and simple. It should not take the Plaintiffs engaging counsel, \ndemanding information and forcing Hingham to investigate this matter to reveal that selection for \nNHS was a manipulated sham conducted by the Defendants, who at all times relevant were state \nactors. \nC. The Student Will Suffer Irreparable Harm If The Injunction is Not Granted \nIn order for the Plaintiffs to obtain injunctive relief, they must show that they are "likely to \nsuffer irreparable injury before a decision is rendered on the merits." See Philips Elecs. N. Am. \nCorp. v. Halperin, 2000 Mass. Super LEXIS 574 citing Sierra Club v. Larson, 769 F. Supp. 420,',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6875 |
cosine_accuracy@3 | 0.8542 |
cosine_accuracy@5 | 0.9583 |
cosine_accuracy@10 | 0.9792 |
cosine_precision@1 | 0.6875 |
cosine_precision@3 | 0.2847 |
cosine_precision@5 | 0.1917 |
cosine_precision@10 | 0.0979 |
cosine_recall@1 | 0.6875 |
cosine_recall@3 | 0.8542 |
cosine_recall@5 | 0.9583 |
cosine_recall@10 | 0.9792 |
cosine_ndcg@10 | 0.8281 |
cosine_mrr@10 | 0.7794 |
cosine_map@100 | 0.7813 |
dot_accuracy@1 | 0.6875 |
dot_accuracy@3 | 0.8542 |
dot_accuracy@5 | 0.9583 |
dot_accuracy@10 | 0.9792 |
dot_precision@1 | 0.6875 |
dot_precision@3 | 0.2847 |
dot_precision@5 | 0.1917 |
dot_precision@10 | 0.0979 |
dot_recall@1 | 0.6875 |
dot_recall@3 | 0.8542 |
dot_recall@5 | 0.9583 |
dot_recall@10 | 0.9792 |
dot_ndcg@10 | 0.8281 |
dot_mrr@10 | 0.7794 |
dot_map@100 | 0.7813 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 400 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 400 samples:
sentence_0 sentence_1 type string string details - min: 10 tokens
- mean: 20.73 tokens
- max: 34 tokens
- min: 25 tokens
- mean: 140.37 tokens
- max: 260 tokens
- Samples:
sentence_0 sentence_1 How does Perplexity's business model differ from that of traditional search engines?
11.
Perplexity’s business is fundamentally distinct from that of traditional search
engines that also copy a vast amount of content into their indices but do so merely to provide links
to the originating sites. In its traditional form, a search engine is a tool for discovery, pointing
searchers to websites such as the pages of The Wall Street Journal or the New York Post, where the
users can click to find the information and answers they seek. Those clicks in turn provide revenue
for content producers. In part because traditional search engines that simply provide hyperlinks
promote merely the discovery of copyrighted content, and not its substitution (and commercialWhat role do clicks on traditional search engines play in the revenue generation for content producers?
11.
Perplexity’s business is fundamentally distinct from that of traditional search
engines that also copy a vast amount of content into their indices but do so merely to provide links
to the originating sites. In its traditional form, a search engine is a tool for discovery, pointing
searchers to websites such as the pages of The Wall Street Journal or the New York Post, where the
users can click to find the information and answers they seek. Those clicks in turn provide revenue
for content producers. In part because traditional search engines that simply provide hyperlinks
promote merely the discovery of copyrighted content, and not its substitution (and commercialWho were the founders of Dow Jones?
founded by reporters Charles Dow, Edward Jones, and Charles Bergstresser. Publishing the first
edition of The Wall Street Journal in July 1889, Dow Jones has now expanded into a worldwide
news powerhouse. It creates and distributes some of the most widely recognized and reputable
publications in the news industry, including, in addition to The Wall Street Journal, Dow Jones
Newswires, MarketWatch, Financial News, and Barron’s.
29.
Dow Jones is a trusted source of accurate, original news stories, data and analytics,
and financial and business insight for millions of customers across the country and around the
world.
30.
A recipient of 39 Pulitzer Prizes, the award-winning newsroom at The Wall Street - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 40 | 0.7519 |
1.25 | 50 | 0.8072 |
2.0 | 80 | 0.7892 |
2.5 | 100 | 0.7949 |
3.0 | 120 | 0.7850 |
3.75 | 150 | 0.7537 |
4.0 | 160 | 0.7905 |
5.0 | 200 | 0.7650 |
6.0 | 240 | 0.7860 |
6.25 | 250 | 0.7806 |
7.0 | 280 | 0.7819 |
7.5 | 300 | 0.7820 |
8.0 | 320 | 0.7820 |
8.75 | 350 | 0.7821 |
9.0 | 360 | 0.7823 |
10.0 | 400 | 0.7813 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for llm-wizard/legal-ft-arctic-l
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.688
- Cosine Accuracy@3 on Unknownself-reported0.854
- Cosine Accuracy@5 on Unknownself-reported0.958
- Cosine Accuracy@10 on Unknownself-reported0.979
- Cosine Precision@1 on Unknownself-reported0.688
- Cosine Precision@3 on Unknownself-reported0.285
- Cosine Precision@5 on Unknownself-reported0.192
- Cosine Precision@10 on Unknownself-reported0.098
- Cosine Recall@1 on Unknownself-reported0.688
- Cosine Recall@3 on Unknownself-reported0.854