doberst commited on
Commit
0099a4c
·
verified ·
1 Parent(s): 9cc8689

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -6,23 +6,23 @@ license: apache-2.0
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
- **dragon-mistral-answer-tool** is a quantized version of DRAGON Mistral 7B, with 4_K_M GGUF quantization, providing a fast, small inference implementation for use on CPUs.
10
 
11
- [**dragon-mistral-7b**](https://huggingface.co/llmware/dragon-mistral-7b-v0) is a fact-based question-answering model, optimized for complex business documents.
12
 
13
  To pull the model via API:
14
 
15
  from huggingface_hub import snapshot_download
16
- snapshot_download("llmware/dragon-mistral-answer-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
17
 
18
 
19
  Load in your favorite GGUF inference engine, or try with llmware as follows:
20
 
21
  from llmware.models import ModelCatalog
22
- model = ModelCatalog().load_model("dragon-mistral-answer-tool")
23
  response = model.inference(query, add_context=text_sample)
24
 
25
- Note: please review [**config.json**](https://huggingface.co/llmware/dragon-mistral-answer-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
26
 
27
 
28
  ### Model Description
@@ -33,7 +33,7 @@ Note: please review [**config.json**](https://huggingface.co/llmware/dragon-mist
33
  - **Model type:** GGUF
34
  - **Language(s) (NLP):** English
35
  - **License:** Apache 2.0
36
- - **Quantized from model:** [llmware/dragon-mistral](https://huggingface.co/llmware/dragon-mistral-7b-v0/)
37
 
38
 
39
  ## Model Card Contact
 
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
+ **bling-answer-tool** is a quantized version of BLING Tiny-Llama 1B, with 4_K_M GGUF quantization, providing a very fast, very small inference implementation for use on CPUs.
10
 
11
+ [**bling-tiny-llama**](https://huggingface.co/llmware/bling-tiny-llama-v0) is a fact-based question-answering model, optimized for complex business documents.
12
 
13
  To pull the model via API:
14
 
15
  from huggingface_hub import snapshot_download
16
+ snapshot_download("llmware/bling-answer-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
17
 
18
 
19
  Load in your favorite GGUF inference engine, or try with llmware as follows:
20
 
21
  from llmware.models import ModelCatalog
22
+ model = ModelCatalog().load_model("bling-answer-tool")
23
  response = model.inference(query, add_context=text_sample)
24
 
25
+ Note: please review [**config.json**](https://huggingface.co/llmware/bling-answer-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
26
 
27
 
28
  ### Model Description
 
33
  - **Model type:** GGUF
34
  - **Language(s) (NLP):** English
35
  - **License:** Apache 2.0
36
+ - **Quantized from model:** [llmware/dragon-mistral](https://huggingface.co/llmware/bling-tiny-llama-v0/)
37
 
38
 
39
  ## Model Card Contact