layoutlm-funsd / README.md
lmurray's picture
End of training
73b643b verified
|
raw
history blame
9.4 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6953
  • Answer: {'precision': 0.7040261153427638, 'recall': 0.799752781211372, 'f1': 0.7488425925925926, 'number': 809}
  • Header: {'precision': 0.24516129032258063, 'recall': 0.31932773109243695, 'f1': 0.2773722627737226, 'number': 119}
  • Question: {'precision': 0.7894273127753304, 'recall': 0.8413145539906103, 'f1': 0.8145454545454545, 'number': 1065}
  • Overall Precision: 0.7157
  • Overall Recall: 0.7933
  • Overall F1: 0.7525
  • Overall Accuracy: 0.8063

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8542 1.0 10 1.6365 {'precision': 0.01658374792703151, 'recall': 0.012360939431396786, 'f1': 0.014164305949008497, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.21144674085850557, 'recall': 0.12488262910798122, 'f1': 0.15702479338842976, 'number': 1065} 0.1161 0.0718 0.0887 0.3298
1.4883 2.0 20 1.3085 {'precision': 0.17417417417417416, 'recall': 0.21508034610630408, 'f1': 0.19247787610619468, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.37554585152838427, 'recall': 0.48450704225352115, 'f1': 0.4231242312423124, 'number': 1065} 0.2908 0.3462 0.3161 0.5523
1.1521 3.0 30 0.9728 {'precision': 0.452642073778664, 'recall': 0.5611866501854141, 'f1': 0.5011037527593818, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5948678071539658, 'recall': 0.7183098591549296, 'f1': 0.6507868991918333, 'number': 1065} 0.53 0.6116 0.5679 0.6953
0.8808 4.0 40 0.7922 {'precision': 0.582089552238806, 'recall': 0.723114956736712, 'f1': 0.6449834619625138, 'number': 809} {'precision': 0.06666666666666667, 'recall': 0.025210084033613446, 'f1': 0.036585365853658534, 'number': 119} {'precision': 0.6649916247906198, 'recall': 0.7455399061032864, 'f1': 0.7029659141212926, 'number': 1065} 0.6159 0.6934 0.6523 0.7508
0.6941 5.0 50 0.7105 {'precision': 0.6461704422869471, 'recall': 0.7404202719406675, 'f1': 0.6900921658986174, 'number': 809} {'precision': 0.1875, 'recall': 0.15126050420168066, 'f1': 0.16744186046511625, 'number': 119} {'precision': 0.651778955336866, 'recall': 0.8084507042253521, 'f1': 0.721709974853311, 'number': 1065} 0.6305 0.7416 0.6816 0.7809
0.5844 6.0 60 0.6780 {'precision': 0.6598360655737705, 'recall': 0.796044499381953, 'f1': 0.7215686274509804, 'number': 809} {'precision': 0.2079207920792079, 'recall': 0.17647058823529413, 'f1': 0.19090909090909092, 'number': 119} {'precision': 0.7283633247643531, 'recall': 0.7981220657276995, 'f1': 0.7616487455197132, 'number': 1065} 0.6751 0.7602 0.7151 0.7926
0.5021 7.0 70 0.6522 {'precision': 0.6852248394004282, 'recall': 0.7911001236093943, 'f1': 0.7343660355708548, 'number': 809} {'precision': 0.20149253731343283, 'recall': 0.226890756302521, 'f1': 0.21343873517786563, 'number': 119} {'precision': 0.7521514629948365, 'recall': 0.8206572769953052, 'f1': 0.7849124382577458, 'number': 1065} 0.6910 0.7732 0.7298 0.8036
0.443 8.0 80 0.6501 {'precision': 0.6827731092436975, 'recall': 0.8034610630407911, 'f1': 0.7382169222032936, 'number': 809} {'precision': 0.2542372881355932, 'recall': 0.25210084033613445, 'f1': 0.25316455696202533, 'number': 119} {'precision': 0.7689003436426117, 'recall': 0.8403755868544601, 'f1': 0.8030506953790938, 'number': 1065} 0.7050 0.7903 0.7452 0.8060
0.3917 9.0 90 0.6715 {'precision': 0.6913319238900634, 'recall': 0.8084054388133498, 'f1': 0.7452991452991453, 'number': 809} {'precision': 0.25547445255474455, 'recall': 0.29411764705882354, 'f1': 0.2734375, 'number': 119} {'precision': 0.7811387900355872, 'recall': 0.8244131455399061, 'f1': 0.8021927820922796, 'number': 1065} 0.7100 0.7863 0.7462 0.8032
0.3849 10.0 100 0.6725 {'precision': 0.6908315565031983, 'recall': 0.8009888751545118, 'f1': 0.7418431597023468, 'number': 809} {'precision': 0.24444444444444444, 'recall': 0.2773109243697479, 'f1': 0.25984251968503935, 'number': 119} {'precision': 0.7829937998228521, 'recall': 0.8300469483568075, 'f1': 0.805834092980857, 'number': 1065} 0.7107 0.7852 0.7461 0.8064
0.3232 11.0 110 0.6747 {'precision': 0.6918976545842217, 'recall': 0.8022249690976514, 'f1': 0.7429879793932456, 'number': 809} {'precision': 0.25161290322580643, 'recall': 0.3277310924369748, 'f1': 0.2846715328467153, 'number': 119} {'precision': 0.7609797297297297, 'recall': 0.8460093896713615, 'f1': 0.8012449977767896, 'number': 1065} 0.6978 0.7973 0.7443 0.8001
0.3028 12.0 120 0.6871 {'precision': 0.700218818380744, 'recall': 0.7911001236093943, 'f1': 0.7428903076030179, 'number': 809} {'precision': 0.25, 'recall': 0.31092436974789917, 'f1': 0.27715355805243447, 'number': 119} {'precision': 0.7985611510791367, 'recall': 0.8338028169014085, 'f1': 0.8158015617822691, 'number': 1065} 0.7199 0.7852 0.7511 0.8042
0.284 13.0 130 0.6905 {'precision': 0.697524219590958, 'recall': 0.8009888751545118, 'f1': 0.7456846950517838, 'number': 809} {'precision': 0.2602739726027397, 'recall': 0.31932773109243695, 'f1': 0.28679245283018867, 'number': 119} {'precision': 0.7929203539823009, 'recall': 0.8413145539906103, 'f1': 0.8164009111617311, 'number': 1065} 0.7175 0.7938 0.7537 0.8057
0.2666 14.0 140 0.6958 {'precision': 0.6949516648764769, 'recall': 0.799752781211372, 'f1': 0.7436781609195402, 'number': 809} {'precision': 0.2585034013605442, 'recall': 0.31932773109243695, 'f1': 0.2857142857142857, 'number': 119} {'precision': 0.7904085257548845, 'recall': 0.8356807511737089, 'f1': 0.8124144226380648, 'number': 1065} 0.7146 0.7903 0.7505 0.8040
0.2705 15.0 150 0.6953 {'precision': 0.7040261153427638, 'recall': 0.799752781211372, 'f1': 0.7488425925925926, 'number': 809} {'precision': 0.24516129032258063, 'recall': 0.31932773109243695, 'f1': 0.2773722627737226, 'number': 119} {'precision': 0.7894273127753304, 'recall': 0.8413145539906103, 'f1': 0.8145454545454545, 'number': 1065} 0.7157 0.7933 0.7525 0.8063

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1