lunde commited on
Commit
f7ec252
·
1 Parent(s): 5075fed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -7
README.md CHANGED
@@ -7,9 +7,11 @@ language: sv
7
  datasets:
8
  - SUC 3.0
9
  widget:
10
- - text: "Hampus Londögård bor i Lund och har levererat denna model idag."
11
  ---
12
 
 
 
13
  ## Swedish NER in Flair (SUC 3.0)
14
  F1-Score: **85.6** (SUC 3.0)
15
 
@@ -38,9 +40,9 @@ Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
38
  from flair.data import Sentence
39
  from flair.models import SequenceTagger
40
  # load tagger
41
- tagger = SequenceTagger.load("flair/ner-english-ontonotes-large")
42
  # make example sentence
43
- sentence = Sentence("Hampus Londögård bor i Lund och har levererat denna model idag.")
44
  # predict NER tags
45
  tagger.predict(sentence)
46
  # print sentence
@@ -53,12 +55,12 @@ for entity in sentence.get_spans('ner'):
53
  ```
54
  This yields the following output:
55
  ```
56
- Span [0,1]: "Hampus Londögård" [− Labels: PRS (1.0)]
57
- Span [4]: "Lund" [− Labels: LOC (1.0)]
58
- Span [10]: "idag" [− Labels: TME(1.0)]
59
  ```
60
 
61
- So, the entities "_Hampus Londögård_" (labeled as a **PRS**), "_Lund_" (labeled as a **LOC**), "_idag_" (labeled as a **TME**) are found in the sentence "_Hampus Londögård bor i Lund och har levererat denna model idag._".
62
 
63
  ---
64
 
 
7
  datasets:
8
  - SUC 3.0
9
  widget:
10
+ - text: "Hampus bor i Skåne och har levererat denna model idag."
11
  ---
12
 
13
+ Published with ❤️ from [londogard](https://londogard.com).
14
+
15
  ## Swedish NER in Flair (SUC 3.0)
16
  F1-Score: **85.6** (SUC 3.0)
17
 
 
40
  from flair.data import Sentence
41
  from flair.models import SequenceTagger
42
  # load tagger
43
+ tagger = SequenceTagger.load("londogard/flair-swe-ner")
44
  # make example sentence
45
+ sentence = Sentence("Hampus bor i Skåne och har levererat denna model idag.")
46
  # predict NER tags
47
  tagger.predict(sentence)
48
  # print sentence
 
55
  ```
56
  This yields the following output:
57
  ```
58
+ Span [0]: "Hampus" [− Labels: PRS (1.0)]
59
+ Span [3]: "Skåne" [− Labels: LOC (1.0)]
60
+ Span [9]: "idag" [− Labels: TME(1.0)]
61
  ```
62
 
63
+ So, the entities "_Hampus_" (labeled as a **PRS**), "_Skåne_" (labeled as a **LOC**), "_idag_" (labeled as a **TME**) are found in the sentence "_Hampus bor i Skåne och har levererat denna model idag._".
64
 
65
  ---
66