lsbuitrago/wnut_test_model

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1136
  • Validation Loss: 0.2519
  • Train Precision: 0.6410
  • Train Recall: 0.4486
  • Train F1: 0.5278
  • Train Accuracy: 0.9491
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
0.3233 0.3078 0.5333 0.1914 0.2817 0.9334 0
0.1534 0.2625 0.6388 0.4019 0.4934 0.9455 1
0.1136 0.2519 0.6410 0.4486 0.5278 0.9491 2

Framework versions

  • Transformers 4.26.1
  • TensorFlow 2.10.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.