SentenceTransformer based on google-bert/bert-base-multilingual-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-multilingual-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-multilingual-uncased
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("luanafelbarros/bert-base-multilingual-uncased-matryoshka-mkqa")
# Run inference
sentences = [
'who wrote the song i shot the sheriff',
'i shot the sheriff şarkısını kim besteledi',
'tr',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Datasets:
MSE-val-en-to-ar
,MSE-val-en-to-da
,MSE-val-en-to-de
,MSE-val-en-to-en
,MSE-val-en-to-es
,MSE-val-en-to-fi
,MSE-val-en-to-fr
,MSE-val-en-to-he
,MSE-val-en-to-hu
,MSE-val-en-to-it
,MSE-val-en-to-ja
,MSE-val-en-to-ko
,MSE-val-en-to-km
,MSE-val-en-to-ms
,MSE-val-en-to-nl
,MSE-val-en-to-no
,MSE-val-en-to-pl
,MSE-val-en-to-pt
,MSE-val-en-to-ru
,MSE-val-en-to-sv
,MSE-val-en-to-th
,MSE-val-en-to-tr
,MSE-val-en-to-vi
,MSE-val-en-to-zh_cn
,MSE-val-en-to-zh_hk
andMSE-val-en-to-zh_tw
- Evaluated with
MSEEvaluator
Metric | MSE-val-en-to-ar | MSE-val-en-to-da | MSE-val-en-to-de | MSE-val-en-to-en | MSE-val-en-to-es | MSE-val-en-to-fi | MSE-val-en-to-fr | MSE-val-en-to-he | MSE-val-en-to-hu | MSE-val-en-to-it | MSE-val-en-to-ja | MSE-val-en-to-ko | MSE-val-en-to-km | MSE-val-en-to-ms | MSE-val-en-to-nl | MSE-val-en-to-no | MSE-val-en-to-pl | MSE-val-en-to-pt | MSE-val-en-to-ru | MSE-val-en-to-sv | MSE-val-en-to-th | MSE-val-en-to-tr | MSE-val-en-to-vi | MSE-val-en-to-zh_cn | MSE-val-en-to-zh_hk | MSE-val-en-to-zh_tw |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
negative_mse | -20.3772 | -17.1675 | -17.1095 | -15.3337 | -16.8981 | -18.4286 | -17.0421 | -19.9421 | -18.7571 | -17.1871 | -19.9155 | -21.3992 | -28.6587 | -17.2521 | -16.6051 | -17.15 | -17.8465 | -17.1935 | -18.1342 | -17.132 | -26.4308 | -18.1833 | -18.7496 | -18.8118 | -18.5408 | -19.1404 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 234,000 training samples
- Columns:
english
,non-english
,target
, andlabel
- Approximate statistics based on the first 1000 samples:
english non-english target label type string string string list details - min: 10 tokens
- mean: 11.48 tokens
- max: 16 tokens
- min: 3 tokens
- mean: 13.27 tokens
- max: 33 tokens
- min: 3 tokens
- mean: 3.38 tokens
- max: 7 tokens
- size: 768 elements
- Samples:
english non-english target label who plays hope on days of our lives
من الذي يلعب الأمل في أيام حياتنا
ar
[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]
who plays hope on days of our lives
hvem spiller hope i Horton-sagaen
da
[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]
who plays hope on days of our lives
Wer spielt die Hope in Zeit der Sehnsucht?
de
[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 13,000 evaluation samples
- Columns:
english
,non-english
,target
, andlabel
- Approximate statistics based on the first 1000 samples:
english non-english target label type string string string list details - min: 10 tokens
- mean: 11.53 tokens
- max: 14 tokens
- min: 3 tokens
- mean: 13.37 tokens
- max: 50 tokens
- min: 3 tokens
- mean: 3.38 tokens
- max: 7 tokens
- size: 768 elements
- Samples:
english non-english target label who played prudence on nanny and the professor
من لعب دور "prudence" فى "nanny and the professor"
ar
[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]
who played prudence on nanny and the professor
hvem spiller prudence på nanny and the professor
da
[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]
who played prudence on nanny and the professor
Wer spielte Prudence in Nanny and the Professor
de
[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 1e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | MSE-val-en-to-ar_negative_mse | MSE-val-en-to-da_negative_mse | MSE-val-en-to-de_negative_mse | MSE-val-en-to-en_negative_mse | MSE-val-en-to-es_negative_mse | MSE-val-en-to-fi_negative_mse | MSE-val-en-to-fr_negative_mse | MSE-val-en-to-he_negative_mse | MSE-val-en-to-hu_negative_mse | MSE-val-en-to-it_negative_mse | MSE-val-en-to-ja_negative_mse | MSE-val-en-to-ko_negative_mse | MSE-val-en-to-km_negative_mse | MSE-val-en-to-ms_negative_mse | MSE-val-en-to-nl_negative_mse | MSE-val-en-to-no_negative_mse | MSE-val-en-to-pl_negative_mse | MSE-val-en-to-pt_negative_mse | MSE-val-en-to-ru_negative_mse | MSE-val-en-to-sv_negative_mse | MSE-val-en-to-th_negative_mse | MSE-val-en-to-tr_negative_mse | MSE-val-en-to-vi_negative_mse | MSE-val-en-to-zh_cn_negative_mse | MSE-val-en-to-zh_hk_negative_mse | MSE-val-en-to-zh_tw_negative_mse |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1367 | 500 | 0.3588 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2734 | 1000 | 0.3078 | 0.2868 | -27.3597 | -26.5326 | -26.5313 | -26.0601 | -26.4280 | -26.8319 | -26.4885 | -27.1627 | -26.9695 | -26.5628 | -27.2583 | -27.7239 | -31.2177 | -26.6501 | -26.4197 | -26.4809 | -26.6655 | -26.4345 | -26.6570 | -26.5526 | -30.4823 | -26.9554 | -27.1040 | -27.0230 | -26.9012 | -27.0515 |
0.4102 | 1500 | 0.2846 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5469 | 2000 | 0.2707 | 0.2617 | -24.6096 | -22.8821 | -22.8752 | -21.8660 | -22.7026 | -23.6128 | -22.7468 | -24.2281 | -23.6469 | -22.9147 | -24.3616 | -25.2999 | -30.4061 | -23.0865 | -22.5916 | -22.8392 | -23.1451 | -22.7741 | -23.2652 | -22.9440 | -29.2747 | -23.5285 | -23.8786 | -23.6384 | -23.5170 | -23.8081 |
0.6836 | 2500 | 0.2613 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8203 | 3000 | 0.2542 | 0.2491 | -23.2261 | -21.0314 | -20.9970 | -19.7599 | -20.8388 | -21.9791 | -20.8374 | -22.8299 | -22.0605 | -21.0367 | -22.9281 | -24.1290 | -29.9238 | -21.2195 | -20.6506 | -20.9939 | -21.4204 | -20.9651 | -21.5594 | -21.0815 | -28.3947 | -21.8046 | -22.2153 | -21.9866 | -21.8474 | -22.1930 |
0.9571 | 3500 | 0.248 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0938 | 4000 | 0.2438 | 0.2420 | -22.4435 | -19.9880 | -19.9588 | -18.5856 | -19.7880 | -20.9892 | -19.8194 | -21.9951 | -21.1703 | -19.9940 | -22.1052 | -23.3569 | -29.5927 | -20.1685 | -19.5862 | -19.9676 | -20.4346 | -19.9623 | -20.6201 | -20.0273 | -27.9725 | -20.8061 | -21.2406 | -21.0913 | -20.9345 | -21.3353 |
1.2305 | 4500 | 0.2401 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3672 | 5000 | 0.2371 | 0.2373 | -21.9444 | -19.3005 | -19.2441 | -17.7989 | -19.0868 | -20.3950 | -19.1305 | -21.5127 | -20.6068 | -19.3250 | -21.5673 | -22.8791 | -29.3793 | -19.4702 | -18.8669 | -19.2886 | -19.8258 | -19.3057 | -20.0101 | -19.3345 | -27.5779 | -20.1899 | -20.6284 | -20.5167 | -20.3229 | -20.7721 |
1.5040 | 5500 | 0.2349 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6407 | 6000 | 0.2336 | 0.2346 | -21.6615 | -18.9016 | -18.8657 | -17.3452 | -18.6869 | -20.0105 | -18.7528 | -21.1990 | -20.2645 | -18.9266 | -21.2386 | -22.6295 | -29.2204 | -19.0695 | -18.4641 | -18.9026 | -19.4506 | -18.9074 | -19.6659 | -18.9515 | -27.3466 | -19.8162 | -20.2736 | -20.1841 | -19.9848 | -20.4531 |
1.7774 | 6500 | 0.2319 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9141 | 7000 | 0.2309 | 0.2332 | -21.5220 | -18.7091 | -18.6632 | -17.1205 | -18.4809 | -19.8342 | -18.5557 | -21.0604 | -20.0990 | -18.7323 | -21.0808 | -22.4971 | -29.1680 | -18.8630 | -18.2583 | -18.6989 | -19.2859 | -18.7163 | -19.4929 | -18.7442 | -27.2443 | -19.6327 | -20.1037 | -20.0234 | -19.8106 | -20.3017 |
0.1367 | 500 | 0.2302 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2734 | 1000 | 0.2261 | 0.2290 | -21.1100 | -18.0936 | -18.0277 | -16.4059 | -17.8516 | -19.2687 | -17.9684 | -20.6744 | -19.5689 | -18.1063 | -20.6725 | -22.0790 | -28.9503 | -18.2049 | -17.5842 | -18.0814 | -18.7115 | -18.1111 | -18.9581 | -18.1032 | -26.8510 | -19.0325 | -19.5538 | -19.6006 | -19.3362 | -19.8807 |
0.4102 | 1500 | 0.222 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5469 | 2000 | 0.2188 | 0.2246 | -20.5835 | -17.4530 | -17.3853 | -15.6663 | -17.1929 | -18.6930 | -17.3208 | -20.1688 | -19.0165 | -17.4784 | -20.1460 | -21.6056 | -28.7345 | -17.5632 | -16.9100 | -17.4263 | -18.0993 | -17.4835 | -18.3902 | -17.4462 | -26.5854 | -18.4647 | -19.0091 | -19.0492 | -18.7904 | -19.3776 |
0.6836 | 2500 | 0.2166 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8203 | 3000 | 0.2148 | 0.2226 | -20.3772 | -17.1675 | -17.1095 | -15.3337 | -16.8981 | -18.4286 | -17.0421 | -19.9421 | -18.7571 | -17.1871 | -19.9155 | -21.3992 | -28.6587 | -17.2521 | -16.6051 | -17.1500 | -17.8465 | -17.1935 | -18.1342 | -17.1320 | -26.4308 | -18.1833 | -18.7496 | -18.8118 | -18.5408 | -19.1404 |
0.9571 | 3500 | 0.2133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for luanafelbarros/bert-base-multilingual-uncased-matryoshka-mkqa
Base model
google-bert/bert-base-multilingual-uncasedEvaluation results
- Negative Mse on MSE val en to arself-reported-20.377
- Negative Mse on MSE val en to daself-reported-17.167
- Negative Mse on MSE val en to deself-reported-17.109
- Negative Mse on MSE val en to enself-reported-15.334
- Negative Mse on MSE val en to esself-reported-16.898
- Negative Mse on MSE val en to fiself-reported-18.429
- Negative Mse on MSE val en to frself-reported-17.042
- Negative Mse on MSE val en to heself-reported-19.942
- Negative Mse on MSE val en to huself-reported-18.757
- Negative Mse on MSE val en to itself-reported-17.187